Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791051

ABSTRACT

Senescent cells, which accumulate with age, exhibit a pro-inflammatory senescence-associated secretory phenotype (SASP) that includes the secretion of cytokines, lipids, and extracellular vesicles (EVs). Here, we established an in vitro model of senescence induced by Raf-1 oncogene in RAW 264.7 murine macrophages (MΦ) and compared them to senescent MΦ found in mouse lung tumors or primary macrophages treated with hydrogen peroxide. The transcriptomic analysis of senescent MΦ revealed an important inflammatory signature regulated by NFkB. We observed an increased secretion of EVs in senescent MΦ, and these EVs presented an enrichment for ribosomal proteins, major vault protein, pro-inflammatory miRNAs, including miR-21a, miR-155, and miR-132, and several mRNAs. The secretion of senescent MΦ allowed senescent murine embryonic fibroblasts to restart cell proliferation. This antisenescence function of the macrophage secretome may explain their pro-tumorigenic activity and suggest that senolytic treatment to eliminate senescent MΦ could potentially prevent these deleterious effects.

2.
Cell Rep ; 43(4): 114044, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568812

ABSTRACT

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.


Subject(s)
Cellular Senescence , Chromatin , Humans , Chromatin/metabolism , Cellular Senescence/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Signal Transduction , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Transcription Factors/metabolism , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Oncogenes
3.
Cancers (Basel) ; 14(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36428689

ABSTRACT

Pancreatic cancer (pancreatic ductal adenocarcinoma: PDAC) is one of the most aggressive neoplastic diseases. Metformin use has been associated with reduced pancreatic cancer incidence and better survival in diabetics. Metformin has been shown to inhibit PDAC cells growth and survival, both in vitro and in vivo. However, clinical trials using metformin have failed to reduce pancreatic cancer progression in patients, raising important questions about molecular mechanisms that protect tumor cells from the antineoplastic activities of metformin. We confirmed that metformin acts through inhibition of mitochondrial complex I, decreasing the NAD+/NADH ratio, and that NAD+/NADH homeostasis determines metformin sensitivity in several cancer cell lines. Metabolites that can restore the NAD+/NADH ratio caused PDAC cells to be resistant to metformin. In addition, metformin treatment of PDAC cell lines induced a compensatory NAMPT expression, increasing the pool of cellular NAD+. The NAMPT inhibitor FK866 sensitized PDAC cells to the antiproliferative effects of metformin in vitro and decreased the cellular NAD+ pool. Intriguingly, FK866 combined with metformin increased survival in mice bearing KP4 cell line xenografts, but not in mice with PANC-1 cell line xenografts. Transcriptome analysis revealed that the drug combination reactivated genes in the p53 pathway and oxidative stress, providing new insights about the mechanisms leading to cancer cell death.

4.
Nucleic Acids Res ; 50(14): 8331-8348, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35871297

ABSTRACT

SUMO proteins are important regulators of many key cellular functions in part through their ability to form interactions with other proteins containing SUMO interacting motifs (SIMs). One characteristic feature of all SUMO proteins is the presence of a highly divergent intrinsically disordered region at their N-terminus. In this study, we examine the role of this N-terminal region of SUMO proteins in SUMO-SIM interactions required for the formation of nuclear bodies by the promyelocytic leukemia (PML) protein (PML-NBs). We demonstrate that the N-terminal region of SUMO1 functions in a paralog specific manner as an auto-inhibition domain by blocking its binding to the phosphorylated SIMs of PML and Daxx. Interestingly, we find that this auto-inhibition in SUMO1 is relieved by zinc, and structurally show that zinc stabilizes the complex between SUMO1 and a phospho-mimetic form of the SIM of PML. In addition, we demonstrate that increasing cellular zinc levels enhances PML-NB formation in senescent cells. Taken together, these results provide important insights into a paralog specific function of SUMO1, and suggest that zinc levels could play a crucial role in regulating SUMO1-SIM interactions required for PML-NB formation and function.


Subject(s)
Nuclear Bodies , Promyelocytic Leukemia Protein , SUMO-1 Protein , Zinc , Amino Acid Motifs , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Transcription Factors/metabolism , Zinc/chemistry
5.
Biol Open ; 10(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34676390

ABSTRACT

The origin and evolution of cancer cells is considered to be mainly fueled by DNA mutations. Although translation errors could also expand the cellular proteome, their role in cancer biology remains poorly understood. Tumor suppressors called caretakers block cancer initiation and progression by preventing DNA mutations and/or stimulating DNA repair. If translational errors contribute to tumorigenesis, then caretaker genes should prevent such errors in normal cells in response to oncogenic stimuli. Here, we show that the process of cellular senescence induced by oncogenes, tumor suppressors or chemotherapeutic drugs is associated with a reduction in translational readthrough (TR) measured using reporters containing termination codons withing the context of both normal translation termination or programmed TR. Senescence reduced both basal TR and TR stimulated by aminoglycosides. Mechanistically, the reduction of TR during senescence is controlled by the RB tumor suppressor pathway. Cells that escape from cellular senescence either induced by oncogenes or chemotherapy have an increased TR. Also, breast cancer cells that escape from therapy-induced senescence express high levels of AGO1x, a TR isoform of AGO1 linked to breast cancer progression. We propose that senescence and the RB pathway reduce TR limiting proteome diversity and the expression of TR proteins required for cancer cell proliferation.


Subject(s)
Cellular Senescence , Protein Biosynthesis , Cell Proliferation , Cellular Senescence/genetics , Mutation
6.
Mol Cell ; 81(18): 3848-3865.e19, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34547241

ABSTRACT

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.


Subject(s)
Cellular Senescence/physiology , NAD/metabolism , Aging/metabolism , Aging/physiology , Animals , Cell Line, Tumor , Cellular Senescence/genetics , Cytosol , Glucose/metabolism , Humans , Hydrogen/chemistry , Hydrogen/metabolism , Malate Dehydrogenase/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Transgenic , NAD/physiology , Oxidation-Reduction , Pyruvate Carboxylase/metabolism , Pyruvic Acid/metabolism
7.
Cancer Res ; 79(13): 3306-3319, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31101761

ABSTRACT

Expression of the suppressor of cytokine signaling-1 (SOCS1) is inactivated in hematopoietic and solid cancers by promoter methylation, miRNA-mediated silencing, and mutations. Paradoxically, SOCS1 is also overexpressed in many human cancers. We report here that the ability of SOCS1 to interact with p53 and regulate cellular senescence depends on a structural motif that includes tyrosine (Y)80 in the SH2 domain of SOCS1. Mutations in this motif are found at low frequency in some human cancers, and substitution of Y80 by a phosphomimetic residue inhibits p53-SOCS1 interaction and its functional consequences, including stimulation of p53 transcriptional activity, growth arrest, and cellular senescence. Mass spectrometry confirmed SOCS1 Y80 phosphorylation in cells, and a new mAb was generated to detect its presence in tissues by IHC. A tyrosine kinase library screen identified the SRC family as Y80-SOCS1 kinases. SRC family kinase inhibitors potentiated the SOCS1-p53 pathway and reinforced SOCS1-induced senescence. Samples from human lymphomas that often overexpress SOCS1 also displayed SRC family kinase activation, constitutive phosphorylation of SOCS1 on Y80, and SOCS1 cytoplasmic localization. Collectively, these results reveal a mechanism that inactivates the SOCS1-p53 senescence pathway and suggest that inhibition of SRC family kinases as personalized treatment in patients with lymphomas may be successful. SIGNIFICANCE: These findings show that SOCS1 phosphorylation by the SRC family inhibits its tumor-suppressive activity, indicating that patients with increased SOCS1 phosphorylation may benefit from SRC family kinase inhibitors.


Subject(s)
Cellular Senescence , Lymphoma/pathology , Protein Interaction Domains and Motifs , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , src-Family Kinases/metabolism , Humans , Lymphoma/genetics , Lymphoma/metabolism , Phosphorylation , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein/genetics , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism , src Homology Domains , src-Family Kinases/genetics
8.
Cell Cycle ; 18(6-7): 759-770, 2019.
Article in English | MEDLINE | ID: mdl-30874462

ABSTRACT

Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.


Subject(s)
Cell Cycle/physiology , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Cell Cycle Checkpoints/physiology , Cell Line , Cellular Senescence/physiology , HEK293 Cells , Humans , Phosphorylation/physiology , Retinoblastoma Protein/metabolism , Signal Transduction/physiology , Tumor Suppressor Protein p53/metabolism
9.
Aging Cell ; 18(2): e12889, 2019 04.
Article in English | MEDLINE | ID: mdl-30614183

ABSTRACT

Most cancers arise in old individuals, which also accumulate senescent cells. Cellular senescence can be experimentally induced by expression of oncogenes or telomere shortening during serial passage in culture. In vivo, precursor lesions of several cancer types accumulate senescent cells, which are thought to represent a barrier to malignant progression and a response to the aberrant activation of growth signaling pathways by oncogenes (oncogene toxicity). Here, we sought to define gene expression changes associated with cells that bypass senescence induced by oncogenic RAS. In the context of pancreatic ductal adenocarcinoma (PDAC), oncogenic KRAS induces benign pancreatic intraepithelial neoplasias (PanINs), which exhibit features of oncogene-induced senescence. We found that the bypass of senescence in PanINs leads to malignant PDAC cells characterized by gene signatures of epithelial-mesenchymal transition, stem cells, and mitochondria. Stem cell properties were similarly acquired in PanIN cells treated with LPS, and in primary fibroblasts and mammary epithelial cells that bypassed Ras-induced senescence after reduction of ERK signaling. Intriguingly, maintenance of cells that circumvented senescence and acquired stem cell properties was blocked by metformin, an inhibitor of complex I of the electron transport chain or depletion of STAT3, a protein required for mitochondrial functions and stemness. Thus, our studies link bypass of senescence in premalignant lesions to loss of differentiation, acquisition of stemness features, and increased reliance on mitochondrial functions.


Subject(s)
Cellular Senescence/drug effects , Metformin/pharmacology , Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Humans , Mice , Stem Cells/cytology , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Nat Cell Biol ; 20(7): 789-799, 2018 07.
Article in English | MEDLINE | ID: mdl-29941930

ABSTRACT

Cellular senescence is a tumour suppressor programme characterized by a stable cell cycle arrest. Here we report that cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. These defects were associated with reduced expression of several ribosome biogenesis factors, the knockdown of which was also sufficient to induce senescence. Genetic analysis revealed that Rb but not p53 was required for the senescence response to altered ribosome biogenesis. Mechanistically, the ribosomal protein S14 (RPS14 or uS11) accumulates in the soluble non-ribosomal fraction of senescent cells, where it binds and inhibits CDK4 (cyclin-dependent kinase 4). Overexpression of RPS14 is sufficient to inhibit Rb phosphorylation, inducing cell cycle arrest and senescence. Here we describe a mechanism for maintaining the senescent cell cycle arrest that may be relevant for cancer therapy, as well as biomarkers to identify senescent cells.


Subject(s)
Cell Cycle Checkpoints , Cellular Senescence , Neoplasms/metabolism , Retinoblastoma Protein/metabolism , Ribosomes/metabolism , Blood Coagulation Factors/genetics , Blood Coagulation Factors/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , HEK293 Cells , Humans , Neoplasms/genetics , Neoplasms/pathology , PC-3 Cells , Phosphorylation , Protein Binding , RNA Precursors/biosynthesis , RNA Precursors/genetics , RNA, Ribosomal/biosynthesis , RNA, Ribosomal/genetics , RNA-Binding Proteins , Retinoblastoma Protein/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Signal Transduction , Time Factors
11.
Sci Rep ; 8(1): 7754, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29773808

ABSTRACT

Several regulators of SUMOylation have been previously linked to senescence but most targets of this modification in senescent cells remain unidentified. Using a two-step purification of a modified SUMO3, we profiled the SUMO proteome of senescent cells in a site-specific manner. We identified 25 SUMO sites on 23 proteins that were significantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9's ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation.


Subject(s)
Cell Nucleus/metabolism , Cellular Senescence , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein/metabolism , Proteome/analysis , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Humans , Protein Conformation , Sumoylation , Tumor Cells, Cultured , Ubiquitin-Conjugating Enzymes/chemistry
12.
Autophagy ; 12(10): 1965-1966, 2016 10 02.
Article in English | MEDLINE | ID: mdl-27532423

ABSTRACT

Senescence is a natural anticancer defense program disabled in tumor cells. We discovered that deregulated CDK4 (cyclin dependant kinase 4) and CDK6 activities contribute to senescence bypass during tumorigenesis and that their inhibition restores the senescence response in tumor cells. CDK4 and CDK6 phosphorylate RB1/RB, preventing its inhibitory interaction with the E2Fs, the cell cycle transcription factors. However, we also found that CDK4 interacts and phosphorylates the DNMT1 (DNA methyltransferase 1) protein protecting it from macroautophagy/autophagy-mediated protein degradation. This discovery highlights a new epigenetic component of CDK4-CDK6 signaling that could be exploited in cancer treatment.


Subject(s)
Autophagy , Cellular Senescence , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/metabolism , Neoplasms/pathology , Proteolysis , Autophagy/drug effects , Cellular Senescence/drug effects , Clinical Trials as Topic , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , Humans , Models, Biological , Protein Kinase Inhibitors/pharmacology , Proteolysis/drug effects
13.
Cancer Res ; 76(11): 3252-64, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27206849

ABSTRACT

Promyelocytic leukemia (PML) plays a tumor suppressive role by inducing cellular senescence in response to oncogenic stress. However, tumor cell lines fail to engage in complete senescence upon PML activation. In this study, we investigated the mechanisms underlying resistance to PML-induced senescence. Here, we report that activation of the cyclin-dependent kinases CDK4 and CDK6 are essential and sufficient to impair senescence induced by PML expression. Disrupting CDK function by RNA interference or pharmacological inhibition restored senescence in tumor cells and diminished their tumorigenic potential in mouse xenograft models. Complete senescence correlated with an increase in autophagy, repression of E2F target genes, and an gene expression signature of blocked DNA methylation. Accordingly, treatment of tumor cells with inhibitors of DNA methylation reversed resistance to PML-induced senescence. Further, CDK inhibition with palbociclib promoted autophagy-dependent degradation of the DNA methyltransferase DNMT1. Lastly, we found that CDK4 interacted with and phosphorylated DNMT1 in vitro, suggesting that CDK activity is required for its stabilization. Taken together, our findings highlight a potentially valuable feature of CDK4/6 inhibitors as epigenetic modulators to facilitate activation of senescence programs in tumor cells. Cancer Res; 76(11); 3252-64. ©2016 AACR.


Subject(s)
Cellular Senescence/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic , Promyelocytic Leukemia Protein/metabolism , Prostatic Neoplasms/genetics , Animals , Apoptosis , Blotting, Western , Cell Cycle , Cell Proliferation , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , DNA Methylation , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Promyelocytic Leukemia Protein/genetics , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Data Brief ; 7: 490-2, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27014737

ABSTRACT

We analysed STAT5A gene expression in breast cancer using the Oncomine database. We exemplify four representative studies showing that STAT5A is generally downregulated in breast cancer.

15.
Cytokine ; 82: 70-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26876578

ABSTRACT

Here we report that the STAT5A transcription factor is a direct p53 transcriptional target gene. STAT5A is well expressed in p53 wild type cells but not in p53-null cells. Inhibition of p53 reduces STAT5A expression. DNA damaging agents such as doxorubicin also induced STAT5A expression in a p53 dependent manner. Two p53 binding sites were mapped in the STAT5A gene and named PBS1 and PBS2; these sites were sufficient to confer p53 responsiveness in a luciferase reporter gene. Chromatin immunoprecipitation experiments revealed that PBS2 has constitutive p53 bound to it, while p53 binding to PBS1 required DNA damage. In normal human breast lobules, weak p53 staining correlated with regions of intense STAT5A staining. Interestingly, in a cohort of triple negative breast tumor tissues there was little correlation between regions of p53 and STAT5A staining, likely reflecting a high frequency of p53 mutations that stabilize the protein in these tumors. We thus reveal an unexpected connection between cytokine signaling and p53.


Subject(s)
Breast Neoplasms/metabolism , DNA Damage , Mutation , Response Elements , STAT5 Transcription Factor/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Humans , MCF-7 Cells , STAT5 Transcription Factor/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics
16.
Cytokine ; 82: 80-6, 2016 06.
Article in English | MEDLINE | ID: mdl-26841929

ABSTRACT

Normal cell proliferation is controlled by a balance between signals that promote or halt cell proliferation. Micro RNAs are emerging as key elements in providing fine signal balance in different physiological situations. Here we report that STAT5 signaling induces the miRNAs miR-19 and miR-155, which potentially antagonize the tumor suppressor axis composed by the STAT5 target gene SOCS1 (suppressor of cytokine signaling-1) and its downstream effector p53. MiRNA sponges against miR-19 or miR-155 inhibit the functions of these miRNAs and potentiate the induction of SOCS1 and p53 in mouse leukemia cells and in human myeloma cells. Adding a catalytic RNA motif of the hammerhead type within miRNA sponges against miR-155 leads to decreased miR-155 levels and increased their ability of inhibiting cell growth and cell migration in myeloma cells. The results indicate that antagonizing miRNA activity can reactivate tumor suppressor pathways downstream cytokine stimulation in tumor cells.


Subject(s)
Leukemia/metabolism , MicroRNAs/metabolism , Multiple Myeloma/metabolism , RNA, Catalytic/biosynthesis , RNA, Neoplasm/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Leukemia/genetics , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Multiple Myeloma/genetics , RAW 264.7 Cells , RNA, Catalytic/genetics , RNA, Neoplasm/antagonists & inhibitors , RNA, Neoplasm/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Tumor Suppressor Protein p53/genetics
17.
Structure ; 23(1): 126-138, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25497731

ABSTRACT

PML and several other proteins localizing in PML-nuclear bodies (PML-NB) contain phosphoSIMs (SUMO-interacting motifs), and phosphorylation of this motif plays a key role in their interaction with SUMO family proteins. We examined the role that phosphorylation plays in the binding of the phosphoSIMs of PML and Daxx to SUMO1 at the atomic level. The crystal structures of SUMO1 bound to unphosphorylated and tetraphosphorylated PML-SIM peptides indicate that three phosphoserines directly contact specific positively charged residues of SUMO1. Surprisingly, the crystal structure of SUMO1 bound to a diphosphorylated Daxx-SIM peptide indicate that the hydrophobic residues of the phosphoSIM bind in a manner similar to that seen with PML, but important differences are observed when comparing the phosphorylated residues. Together, the results provide an atomic level description of how specific acetylation patterns within different SUMO family proteins can work together with phosphorylation of phosphoSIM's regions of target proteins to regulate binding specificity.


Subject(s)
Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Interaction Domains and Motifs , SUMO-1 Protein/chemistry , SUMO-1 Protein/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Co-Repressor Proteins , Crystallography, X-Ray , HEK293 Cells , Humans , Models, Molecular , Molecular Chaperones , Molecular Sequence Data , Phosphorylation , Promyelocytic Leukemia Protein , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
19.
Mol Biol Cell ; 25(5): 554-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24403608

ABSTRACT

The expression of the forkhead transcription factor checkpoint suppressor 1 (CHES1), also known as FOXN3, is reduced in many types of cancers. We show here that CHES1 decreases protein synthesis and cell proliferation in tumor cell lines but not in normal fibroblasts. Conversely, short hairpin RNA-mediated depletion of CHES1 increases tumor cell proliferation. Growth suppression depends on the CHES1 forkhead DNA-binding domain and correlates with the nuclear localization of CHES1. CHES1 represses the expression of multiple genes, including the kinases PIM2 and DYRK3, which regulate protein biosynthesis, and a number of genes in cilium biogenesis. CHES1 binds directly to the promoter of PIM2, and in cells expressing CHES1 the levels of PIM2 are reduced, as well as the phosphorylation of the PIM2 target 4EBP1. Overexpression of PIM2 or eIF4E partially reverses the antiproliferative effect of CHES1, indicating that PIM2 and protein biosynthesis are important targets of the antiproliferative effect of CHES1. In several human hematopoietic cancers, CHES1 and PIM2 expressions are inversely correlated, suggesting that repression of PIM2 by CHES1 is clinically relevant.


Subject(s)
Cell Cycle Proteins/physiology , Cell Proliferation , Protein Biosynthesis/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/physiology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Fibroblasts/metabolism , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , Humans , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
20.
Genes Dev ; 27(8): 900-15, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23599344

ABSTRACT

Constitutive activation of growth factor signaling pathways paradoxically triggers a cell cycle arrest known as cellular senescence. In primary cells expressing oncogenic ras, this mechanism effectively prevents cell transformation. Surprisingly, attenuation of ERK/MAP kinase signaling by genetic inactivation of Erk2, RNAi-mediated knockdown of ERK1 or ERK2, or MEK inhibitors prevented the activation of the senescence mechanism, allowing oncogenic ras to transform primary cells. Mechanistically, ERK-mediated senescence involved the proteasome-dependent degradation of proteins required for cell cycle progression, mitochondrial functions, cell migration, RNA metabolism, and cell signaling. This senescence-associated protein degradation (SAPD) was observed not only in cells expressing ectopic ras, but also in cells that senesced due to short telomeres. Individual RNAi-mediated inactivation of SAPD targets was sufficient to restore senescence in cells transformed by oncogenic ras or trigger senescence in normal cells. Conversely, the anti-senescence viral oncoproteins E1A, E6, and E7 prevented SAPD. In human prostate neoplasms, high levels of phosphorylated ERK were found in benign lesions, correlating with other senescence markers and low levels of STAT3, one of the SAPD targets. We thus identified a mechanism that links aberrant activation of growth signaling pathways and short telomeres to protein degradation and cellular senescence.


Subject(s)
Cellular Senescence/genetics , MAP Kinase Signaling System/physiology , Proteolysis , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Female , Fibroblasts/cytology , Fibroblasts/enzymology , Gene Knockdown Techniques , Humans , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...