Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
NPJ Precis Oncol ; 8(1): 129, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849448

ABSTRACT

Our objective was to capture subgroups of soft-tissue sarcoma (STS) using handcraft and deep radiomics approaches to understand their relationship with histopathology, gene-expression profiles, and metastatic relapse-free survival (MFS). We included all consecutive adults with newly diagnosed locally advanced STS (N = 225, 120 men, median age: 62 years) managed at our sarcoma reference center between 2008 and 2020, with contrast-enhanced baseline MRI. After MRI postprocessing, segmentation, and reproducibility assessment, 175 handcrafted radiomics features (h-RFs) were calculated. Convolutional autoencoder neural network (CAE) and half-supervised CAE (HSCAE) were trained in repeated cross-validation on representative contrast-enhanced slices to extract 1024 deep radiomics features (d-RFs). Gene-expression levels were calculated following RNA sequencing (RNAseq) of 110 untreated samples from the same cohort. Unsupervised classifications based on h-RFs, CAE, HSCAE, and RNAseq were built. The h-RFs, CAE, and HSCAE grouping were not associated with the transcriptomics groups but with prognostic radiological features known to correlate with lower survivals and higher grade and SARCULATOR groups (a validated prognostic clinical-histological nomogram). HSCAE and h-RF groups were also associated with MFS in multivariable Cox regressions. Combining HSCAE and transcriptomics groups significantly improved the prognostic performances compared to each group alone, according to the concordance index. The combined radiomic-transcriptomic group with worse MFS was characterized by the up-regulation of 707 genes and 292 genesets related to inflammation, hypoxia, apoptosis, and cell differentiation. Overall, subgroups of STS identified on pre-treatment MRI using handcrafted and deep radiomics were associated with meaningful clinical, histological, and radiological characteristics, and could strengthen the prognostic value of transcriptomics signatures.

2.
Cancer Res Commun ; 3(11): 2211-2220, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37861293

ABSTRACT

Patients with advanced soft-tissue sarcomas (STS) have few therapeutic options. Protein arginine methyltransferase 5 (PRMT5), an anticancer target, has been extensively investigated in recent years in epithelial tumors. To date, no data related to the biological role of PRMT5 inhibition and its potential effect as a treatment in STS have been reported.To investigate the therapeutic potential of PRMT5 targeting in STS, we first evaluated the prognostic value of PRMT5 expression in two different cohorts of patients with STS. We then used the potent and selective GSK3326595 (GSK595) compound to investigate the antitumor effect of the pharmacologic inhibition of PRMT5 in vitro via MTT, apoptosis, cell cycle, clonogenicity, and proliferation assays. In vivo studies were performed with two animal models to evaluate the effects of GSK595 on tumor growth. The mechanisms of action were investigated by RNA sequencing, metabolic pathway analysis, Western blotting, and glucose uptake/lactate production assays.High PRMT5 gene expression levels were significantly associated with worsened metastasis-free survival of patients with STS. GSK595 decreased the global symmetric dimethylarginine level, the proliferation rate and clonogenicity of STS cell lines in vitro and tumor growth in vivo. Moreover, PRMT5 inhibition regulated aerobic glycolysis through downregulation of key enzymes of glycolysis as well as glucose uptake and lactate production.The current study demonstrated that PRMT5 regulates STS cell metabolism and thus represents a potential therapeutic target for STS. Additional studies in diverse sarcoma subtypes will be essential to confirm and expand upon these findings. SIGNIFICANCE: STSs have limited therapeutic options. We show here the poor prognostic value of high PRMT5 expression in STS. Moreover, we demonstrate that the pharmacologic inhibition of PRMT5 has significant antitumor activity through the downregulation of glycolysis. Our findings support the clinical investigation of PRMT5 inhibition in STSs.


Subject(s)
Apoptosis , Sarcoma , Animals , Humans , Down-Regulation , Lactates , Glucose , Protein-Arginine N-Methyltransferases
3.
Mod Pathol ; 36(10): 100243, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37307879

ABSTRACT

Neoplasms harboring a KAT6B/A::KANSL1 fusion were initially reported as benign (leiomyomas) and malignant (leiomyosarcomas, low-grade endometrial stromal sarcomas [LG-ESSs]) uterine neoplasms. However, they may represent an emerging entity characterized by clinical aggressiveness contrasting with a rather reassuring microscopic appearance. Here, we aimed to confirm that this neoplasm is a distinct clinicopathologic and molecular sarcoma and identify criteria that should alert pathologists and lead to KAT6B/A::KANSL1 fusion testing in routine practice. Therefore, we conducted a comprehensive clinical, histopathologic, immunohistochemical, and molecular study, including array comparative genomic hybridization, whole RNA-sequencing, unsupervised clustering, and cDNA mutational profile analyses of 16 tumors with KAT6B::KANSL1 fusion from 12 patients. At presentation, patients were peri-menopausal (median, 47.5 years), and the primary tumors were located in the uterine corpus (12/12, 100%), with an additional prevesical location in 1 (8.3%) of 12 cases. The relapse rate was 33.3% (3/9). All tumors (16/16, 100%) showed morphologic and immunohistochemical features overlapping between leiomyoma and endometrial stromal tumors. A whirling recurrent architecture (resembling fibromyxoid-ESS/fibrosarcoma) was found in 13 (81.3%) of 16 tumors. All tumors (16/16, 100%) exhibited numerous arterioliform vessels, and 13 (81.3%) of 18 had large hyalinized central vessels and collagen deposits. Estrogen and progesterone receptors were expressed in 16 (100%) of 16 and 14 (87.5%) of 16 tumors, respectively. Array comparative genomic hybridization performed on 10 tumors classified these neoplasms as simple genomic sarcomas. Whole RNA-sequencing on 16 samples and clustering analysis on primary tumors found that the KAT6B::KANSL1 fusion always occurred between exons 3 of KAT6B and 11 of KANSL1; no pathogenic variant was identified on cDNA, all neoplasms clustered together, close to LG-ESS, and pathway enrichment analysis showed cell proliferation and immune infiltrate recruitment pathway involvement. These results confirm that the sarcomas harboring a KAT6B/A::KANSL1 fusion represent a distinct clinicopathologic entity, close to LG-ESS but different, with clinical aggressiveness despite a reassuring morphology, for which the KAT6B/A::KANSL1 fusion is the molecular driver alteration.

4.
Cancers (Basel) ; 14(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35565317

ABSTRACT

INTRODUCTION: Lymph node metastasis is determinant in the prognosis and treatment of endometrioid endometrial cancer (EEC) but the risk-benefit balance of surgical lymph node staging remains controversial. OBJECTIVE: Describe the pathways associated with lymph node metastases in EEC detected by whole RNA sequencing. METHODS: RNA-sequencing was performed on a retrospective series of 30 non-metastatic EEC. N+ and N- patients were matched for tumoral size, tumoral grade and myometrial invasion. RESULTS: Twenty-eight EECs were analyzable (16 N+ and 12 N-). Bioinformatics Unsupervised analysis revealed three patterns of expression, enriched in N+, mix of N+/N- and enriched in N-, respectively. The cluster with only N+ patient overexpressed extra cellular matrix, epithelial to mesenchymal and smooth muscle contraction pathways with respect to the N- profile. Differential expression analysis between N+ and N- was used to generate a 54-genes signature with an 87% accuracy. CONCLUSION: RNA-expression analysis provides a basis to develop a gene expression-based signature that could pre-operatively predict lymph node invasion.

5.
BMC Cancer ; 21(1): 1180, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34740331

ABSTRACT

BACKGROUND: Soft-tissue sarcomas (STS) represent a heterogeneous group of rare tumors including more than 70 different histological subtypes. High throughput molecular analysis (next generation sequencing exome [NGS]) is a unique opportunity to identify driver mutations that can change the usual one-size-fits-all treatment paradigm to a patient-driven therapeutic strategy. The primary objective of the MULTISARC trial is to assess whether NGS can be conducted for a large proportion of metastatic STS participants within a reasonable time, and, secondarily to determine whether a NGS-guided therapeutic strategy improves participant's outcome. METHODS: This is a randomized, multicentre, phase II/III trial inspired by the design of umbrella and biomarker-driven trials. The setting plans up to 17 investigational centres across France and the recruitment of 960 participants. Participants aged at least 18 years, with unresectable locally advanced and/or metastatic STS confirmed by the French sarcoma pathological reference network, are randomized according to 1:1 allocation ratio between the experimental arm "NGS" and the standard "No NGS". NGS will be considered feasible if (i) NGS results are available and interpretable, and (ii) a report of exome sequencing including a clinical recommendation from a multidisciplinary tumor board is provided to investigators within 7 weeks from reception of the samples on the biopathological platform. A feasibility rate of more than 70% is expected (null hypothesis: 70% versus alternative hypothesis: 80%). In terms of care, participants randomized in "No NGS" arm and who fail treatment will be able to switch to the NGS arm at the request of the investigator. DISCUSSION: The MULTISARC trial is a prospective study designed to provide high-level evidence to support the implementation of NGS in routine clinical practice for advanced STS participants, on a large scale. TRIAL REGISTRATION: clinicaltrial.gov NCT03784014 .


Subject(s)
High-Throughput Nucleotide Sequencing , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Adult , Cost-Benefit Analysis , Feasibility Studies , France , Humans , Prospective Studies , Sample Size , Sarcoma/pathology , Sarcoma/therapy , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/therapy , Time Factors , Exome Sequencing
6.
ESMO Open ; 5(4)2020 07.
Article in English | MEDLINE | ID: mdl-32713836

ABSTRACT

BACKGROUND: Whole exome sequencing and RNA sequencing (WES/RNASeq) should now be implemented in the clinical practice in order to increase access to optimal care for cancer patients. Providing results to Tumour Boards in a relevant time frame-that is, compatible with the clinical pathway-is crucial. Assessing the feasibility of this implementation in the French care system is the primary objective of the Multipli study, as one of the four pilot projects of the national France Genomic Medicine 2025 (FGM 2025) plan. The Multipli study encompasses two innovative trials which will be driven in around 2400 patients suffering from a soft-tissue sarcoma (Multisarc) or a metastatic colorectal carcinoma (Acompli). METHODS: Prior to launching the FGM 2025 cancer pilot study itself, the performance of the Multipli genomic workflow has been evaluated through each step, from the samples collection to the Molecular Tumour Board (MTB) report. Two Multipli-assigned INCa-labelled molecular genetics centres, the CEA-CNRGH sequencing platform and the Institut Bergonié's Bioinformatics Platform were involved in a multicentric study. The duration of each step of the genomic workflow was monitored and bottlenecks were identified. RESULTS: Thirty barriers which could affect the quality of the samples, sequencing results and the duration of each step of the genomic pathway were identified and mastered. The global turnaround time from the sample reception to the MTB report was of 44 calendar days. CONCLUSION: Our results demonstrate the feasibility of tumour genomic analysis by WES/RNASeq within a time frame compatible with the current cancer patient care. Lessons learnt from the Multipli WES/RNASeq Platforms Workflow Study will constitute guidelines for the forthcoming Multipli study and more broadly for the future clinical routine practice in the first two France Genomic Medicine 2025 platforms.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasms , Feasibility Studies , France , Genomics , Humans , Pilot Projects
8.
J Hematol Oncol ; 12(1): 11, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683135

ABSTRACT

BACKGROUND: Leiomyosarcoma (LMS) is one of the most frequent soft tissue sarcoma subtypes and is characterized by a consistent deregulation of the PI3K/mTOR pathway. Cancer stem cells (CSCs) have been poorly studied in soft tissue sarcomas. In this study, we aimed to evaluate the association between CSCs, the outcome of LMS patients, and the resistance to PI3K/mTOR pathway inhibition. METHODS: We investigated the relationships between aldehyde dehydrogenase 1 (ALDH1) expression, a cancer stem cell marker, and the outcome of LMS patients in two independent cohorts. We assessed the impact of CSCs in resistance to PI3K/mTOR pathway inhibition using LMS cell lines, a xenograft mouse model, and human tumor samples. RESULTS: We found that enhanced ALDH1 activity is a hallmark of LMS stem cells and is an independent prognostic factor. We also identified that secondary resistance to PI3K/mTOR pathway inhibition was associated with the expansion of LMS CSCs. Interestingly, we found that EZH2 inhibition, a catalytic component of polycomb repressive complex which plays a critical role in stem cell maintenance, restored sensitivity to PI3K/mTOR pathway inhibition. Importantly, we confirmed the clinical relevance of our findings by analyzing tumor samples from patients who showed secondary resistance after treatment with a PI3Kα inhibitor. CONCLUSIONS: Altogether, our findings suggest that CSCs have a strong impact on the outcome of patients with LMS and that combining PI3K/mTOR and EZH2 inhibitors may represent a promising strategy in this setting.


Subject(s)
Drug Resistance, Neoplasm , Leiomyosarcoma/metabolism , Leiomyosarcoma/pathology , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Adult , Aged , Aldehyde Dehydrogenase 1 Family/metabolism , Animals , Cell Line, Tumor , Cohort Studies , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Female , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Leiomyosarcoma/drug therapy , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Middle Aged , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Prognosis , Protein Kinase Inhibitors/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...