Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917032

ABSTRACT

This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.

2.
J Phys Chem A ; 127(40): 8447-8458, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37773010

ABSTRACT

The accurate calculation of adiabatic ionization energies (AIEs) for polycyclic aromatic hydrocarbons (PAHs) and their substituted analogues is essential for understanding their electronic properties, reactivity, stability, and environmental/health implications. This study demonstrates that the M06-2X density functional theory method excels in predicting the AIEs of polycyclic aromatic hydrocarbons and related molecules, rivaling the (R)CCSD(T)-F12 method in terms of accuracy. These findings suggest that M06-2X, coupled with an appropriate basis set, represents a reliable and efficient method for studying polycyclic aromatic hydrocarbons and related molecules, aligning well with the experimental techniques. The set of molecules examined in this work encompasses numerous polycyclic aromatic hydrocarbons from m/z 67 up to m/z 1,176, containing heteroatoms that may be found in biofuels or nucleic acid bases, making the results highly relevant for photoionization experiments and mass spectrometry. For coronene-derivative molecular species with the C6n2H6n chemical formula, we give an expression to predict their AIEs (AIE (n) = 4.359 + 4.8743n-0.72057, in eV) upon extending the π-aromatic cloud until reaching graphene. In the long term, the application of this method is anticipated to contribute to a deeper understanding of the relationships between PAHs and graphene, guiding research in materials science and electronic applications and serving as a valuable tool for validating theoretical calculation methods.

3.
J Phys Chem A ; 127(9): 2123-2135, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36821725

ABSTRACT

Alkyl nitrates thermally decompose by homolytic cleavage of the weak nitrate bond at very low temperatures (e.g., around 500 K at reaction times of a few seconds). This provides the opportunity to study the subsequent chemistry of the initially formed radical (or its subsequent pyrolysis products, if unstable) and nitrogen dioxide at such mild conditions. In this work this idea is applied to isopropyl nitrate (iPN) pyrolysis, which is studied in a tubular reactor at atmospheric pressure, temperatures ranging from 373 to 773 K, and residence times of around 2 s. At the experimental conditions, iPN decomposition starts at 473 K with O-N bond fission producing isopropoxy radical (i-C3H7O) and NO2. i-C3H7O is rapidly converted to acetaldehyde (CH3CHO), which is the most abundant product detected, and methyl radicals. Other major products detected are formaldehyde (CH2O), methanol (CH3OH), nitromethane (CH3NO2), NO, methane, formamide (CHONH2), and methyl nitrite (CH3ONO). Four literature nitrogen chemistry models─three of those augmented with iPN specific reactions─have been tested for their ability to predict the iPN decomposition and product profiles. The mechanism by the Curran group performs best, but it still underpredicts the observed high formaldehyde and methanol yields. A rate analysis indicates that the branching ratio of the reaction between methyl radicals and nitrogen dioxide is of significant importance. Based on recent theoretical and experimental data, new rate expressions for the two reactions CH3 + NO2 → CH3O + NO and CH3 + NO2 + He → CH3ONO2 + He are calculated and incorporated in the kinetic models. It is shown that this change clearly improves the predictions, although additional work is needed to achieve good agreement between calculated and measured species profiles.

4.
J Phys Chem A ; 127(9): 2113-2122, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36815799

ABSTRACT

Neopentane is an ideal fuel model to study low-temperature oxidation chemistry. The significant discrepancies between experimental data and simulations using the existing neopentane models indicate that an updated study of neopentane oxidation is needed. In this work, neopentane oxidation experiments are carried out using two jet-stirred reactors (JSRs) at 1 atm, at a residence time of 3 s, and at three different equivalence ratios of 0.5, 0.9, and 1.62. Two different analytical methods (synchrotron vacuum ultraviolet photoionization mass spectrometry and gas chromatography) were used to investigate the species distributions. Numerous oxidation intermediates were detected and quantified, including acetone, 3,3-dimethyloxetane, methacrolein, isobutene, 2-methylpropanal, isobutyric acid, and peroxides, which are valuable for validating the kinetic model describing neopentane oxidation. In the model development, the pressure dependencies of the rate constants for the reaction classes Q̇OOH + O2 and Q̇OOH decompositions are considered. This addition improves the prediction of the low-temperature oxidation reactivity of neopentane. Another focus of model development is to improve the prediction of carboxylic acids formed during the low-temperature oxidation of neopentane. The detection and identification of isobutyric acid indicates the existence of the Korcek mechanism during neopentane oxidation. Regarding the formation of acetic acid, the reaction channels are considered to be initiated from the reactions of ȮH radical addition to acetaldehyde/acetone. This updated kinetic model is validated extensively against the experimental data in this work and various experimental data available in the literature, including ignition delay times (IDTs) from both shock tubes (STs) and rapid compression machines (RCMs) and JSR speciation data at high temperatures.

5.
Chem Commun (Camb) ; 58(94): 13139-13142, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36349724

ABSTRACT

Despite decades of research on alkene ozonolysis, the kinetic network of the archetypal case of ethylene (CH2CH2) with ozone (O3) still lacks consensus. In this work, experimental evidence of an elusive diradical pathway is provided through the detection of the 2-hydroperoxyacetaldehyde ketohydroperoxide and its decomposition product, glyoxal.


Subject(s)
Glyoxal , Ozone , Kinetics , Ethylenes
6.
J Phys Chem A ; 126(34): 5784-5799, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35998573

ABSTRACT

Cyclohexane oxidation chemistry was investigated using a near-atmospheric pressure jet-stirred reactor at T = 570 K and equivalence ratio ϕ = 0.8. Numerous intermediates including hydroperoxides and highly oxygenated molecules were detected using synchrotron vacuum ultraviolet photoelectron photoion coincidence spectroscopy. Supported by high-level quantum calculations, the analysis of photoelectron spectra allowed the firm identification of molecular species formed during the oxidation of cyclohexane. Besides, this work validates recently published gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry data. Unambiguous detection of characteristic hydroperoxides (e.g., γ-ketohydroperoxides) and their respective decomposition products provides support for the conventional O2 addition channels up to the third addition and their relative contribution to the cyclohexane oxidation. The results were also compared with the predictions of a recently proposed new detailed kinetic model of cyclohexane oxidation. Most of the predictions are in line with the current experimental findings, highlighting the robustness of the kinetic model. However, the analysis of the recorded slow photoelectron spectra indicating the possible presence of C5 species in the kinetic model provides hints that the substituted cyclopentyl radicals from cyclohexyl ring opening might play a minor role in cyclohexane oxidation. Potentially important missing reactions are also discussed.

7.
Phys Chem Chem Phys ; 24(18): 10826-10837, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35485277

ABSTRACT

tert-Butyl hydroperoxide (tBuOOH) is a common intermediate in the oxidation of organic compounds that needs to be accurately quantified in complex gas mixtures for the development of chemical kinetic models of low temperature combustion. This work presents a combined theoretical and experimental investigation on the synchrotron-based VUV single photon ionization of gas-phase tBuOOH in the 9.0 - 11.0 eV energy range, including dissociative ionization processes. Computations consist of the determination of the structures, vibrational frequencies and the energetics of neutral and ionic tBuOOH. The Franck-Condon spectrum for the tBuOOH+ (X+) + e- ← tBuOOH (X) + hν transition is computed, where special treatment is undertaken because of the flexibility of tBuOOH, in particular regarding the OOH group. Through comparison of the experimental mass-selected threshold photoelectron spectra with explicitly correlated coupled cluster calculations and Franck-Condon simulations that account for the flexibility of the molecule, an estimation of the ionization energy is given. The appearance energy of the only fragment observed within the above-mentioned energy range, identified as the tert-butyl C4H9+, is also reported. Finally, the signal branching ratio between the parent and the fragment ions is provided as a function of photon energy, essential to quantify tBuOOH in gas-phase oxidation/combustion experiments via advanced mass spectrometry techniques.

8.
J Phys Chem A ; 125(15): 3159-3168, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33843236

ABSTRACT

In the atmosphere of Titan, Saturn's main satellite, molecular growth is initiated by 85.6 nm extreme ultraviolet (EUV) photons triggering a chemistry with charged and free-radical species. However, the respective contribution of these species to the complexification of matter is far from being known. This work presents a chemical analysis in order to contribute to a better understanding of aromatic formation pathways. A gas mixture of N2/CH4 (90/10%) within the closed SURFACAT reactor was irradiated at a relatively low pressure (0.1 mbar) and room temperature for 6 h by EUV photons (∼85.6 nm). The neutral molecules formed at the end of the irradiation were condensed in a cryogenic trap and analyzed by electron ionization mass spectrometry. An analysis of the dominant chemical pathways highlights the identification of benzene and toluene and underlies the importance of small ion and radical reactions. On the basis of the experimental results, a speculative mechanism based on sequential H-elimination/CH3-addition reactions is proposed for the growth of aromatics in Titan's atmosphere. Elementary reactions to be studied are given to instill future updates of photochemical models of Titan's atmosphere.

9.
Sci Rep ; 10(1): 10009, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32561886

ABSTRACT

The in situ exploration of Titan's atmosphere requires the development of laboratory experiments to understand the molecular growth pathways initiated by photochemistry in the upper layers of the atmosphere. Key species and dominant reaction pathways are used to feed chemical network models that reproduce the chemical and physical processes of this complex environment. Energetic UV photons initiate highly efficient chemistry by forming reactive species in the ionospheres of the satellite. We present here a laboratory experiment based on a new closed and removable photoreactor coupled here to an Extreme Ultraviolet (EUV) irradiation beam produced by the high-order harmonic generation of a femtosecond laser. This type of EUV stable source allow long-term irradiation experiments in which a plethora of individual reactions can take place. In order to demonstrate the validity of our approach, we irradiated for 7 hours at 89.2 nm, a gas mixture based on N2/CH4 (5%). Using only one wavelength, products of the reaction reveal an efficient photochemistry with the formation of large hydrocarbons but especially organic compounds rich in nitrogen similar to Titan. Among these nitrogen compounds, new species had never before been identified in the mass spectra obtained in situ in Titan's atmosphere. Their production in this experiment, on the opposite, corroborates previous experimental measurements in the literature on the chemical composition of aerosol analogues produced in the laboratory. Diazo-compounds such as dimethyldiazene (C2H6N2), have been observed and are consistent with the large nitrogen incorporation observed by the aerosols collector pyrolysis instrument of the Huygens probe. This work represents an important step forward in the use of a closed cell chamber irradiated by the innovative EUV source for the generation of photochemical analogues of Titan aerosols. This approach allows to better constrain and understand the growth pathways of nitrogen incorporation into organic aerosols in Titan's atmosphere.

10.
Phys Chem Chem Phys ; 22(3): 1222-1241, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31850421

ABSTRACT

Through the use of tunable vacuum ultraviolet light generated by the DESIRS VUV synchrotron beamline, a jet-stirred reactor was coupled for the first time to an advanced photoionization mass spectrometer based upon a double imaging PhotoElectron PhotoIon COincidence (i2PEPICO) scheme. This new coupling was used to investigate the low-temperature oxidation of n-pentane, a prototype molecule for gasoline or diesel fuels. Experiments were performed under quasi-atmospheric pressure (1.1 bar) with a residence time of 3 s for two equivalence ratios (1/3 and 0.5) with a fuel initial mole fraction of 0.01. The measured time-of-flight mass spectra are in good agreement with those previously obtained with other photoionization mass spectrometers and, like those previous ones, display several m/z peaks for which the related species assignation is ambiguous. This paper shows how the analysis of the coincident mass-tagged Threshold PhotoElectron Spectra (TPES) together with first principle computations, consisting of the determination of the adiabatic ionization energies and the spectra of some products, may assist products' identification. The results mostly confirm those previously obtained by photoionization mass spectrometry and gas chromatography, but also allow a more accurate estimation of the 1-pentene/2-pentene mole fraction ratio. Our data also indicate a higher formation of acetone and methyl ethyl ketone than what is predicted by current models, as well as the presence of products that were not previously taken into account, such as methoxyacetylene, methyl vinyl ketone or furanone. The formation of three, four and five membered ring cyclic ethers is confirmed along with linear ketones: 2- and 3-pentanone. A significant general trend in indicating higher amounts of ketones than are indicated by gas chromatography is noted. Finally, TPES of alkenylhydroperoxides are also provided for the first time and constrains on the isomers identification are provided.

11.
Rapid Commun Mass Spectrom ; 34(8): e8684, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-31783433

ABSTRACT

RATIONALE: Quadrupole mass spectrometers equipped with an electron ionization (EI) sources have been widely used in space exploration to investigate the composition of planetary surfaces and atmospheres. However, the complexity of the samples and the minimal calibration for the fragmentation of molecules in the ionization chambers have prevented the deconvolution of the majority of the mass spectra obtained at different targets, thus limiting the determination of the exact composition of the samples analyzed. We propose a Monte-Carlo approach to solve this issue mathematically. METHODS: We decomposed simulated mass spectra of mixtures acquired with unit resolving power mass spectrometers and EI sources into the sum of the single components fragmentation patterns weighted by their relative concentration using interior-point least-square fitting. To fit compounds with poorly known fragmentation patterns, we used a Monte-Carlo method to vary the intensity of individual fragment ions. We then decomposed the spectrum thousands of times to obtain a statistical distribution. RESULTS: By performing the deconvolution on a mixture of seven different molecules with interfering fragmentation patterns (H2 O, O2 , CH4 , Ar, N2 , C2 H4 , and C2 H6 ) we show that this approach retrieves the mixing ratio of the individual components more accurately than regular mass spectra decomposition methods that rely on fragmentation patterns from general databases. It also provides the probability density function for each species's mixing ratio. CONCLUSIONS: By removing the solution degeneracy in the decomposition of mass spectra, the method described herein could significantly increase the scientific retrieval from archived space flight mass spectrometry data, where calibration of the ionization source is no longer an option.

12.
J Phys Chem A ; 123(11): 2178-2193, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30803230

ABSTRACT

Reactions of the methylidyne (CH) radical with ammonia (NH3), methylamine (CH3NH2), dimethylamine ((CH3)2NH), and trimethylamine ((CH3)3N) have been investigated under multiple collision conditions at 373 K and 4 Torr. The reaction products are detected by using soft photoionization coupled to orthogonal acceleration time-of-flight mass spectrometry at the Advanced Light Source (ALS) synchrotron. Kinetic traces are employed to discriminate between CH reaction products and products from secondary or slower reactions. Branching ratios for isomers produced at a given mass and formed by a single reaction are obtained by fitting the observed photoionization spectra to linear combinations of pure compound spectra. The reaction of the CH radical with ammonia is found to form mainly imine, HN═CH2, in line with an addition-elimination mechanism. The singly methyl-substituted imine is detected for the CH reactions with methylamine, dimethylamine, and trimethylamine. Dimethylimine isomers are formed by the reaction of CH with dimethylamine, while trimethylimine is formed by the CH reaction with trimethylamine. Overall, the temporal profiles of the products are not consistent with the formation of aminocarbene products in the reaction flow tube. In the case of the reactions with methylamine and dimethylamine, product formation is assigned to an addition-elimination mechanism similar to that proposed for the CH reaction with ammonia. However, this mechanism cannot explain the products detected by the reaction with trimethylamine. A C-H insertion pathway may become more probable as the number of methyl groups increases.

13.
Phys Chem Chem Phys ; 17(37): 23833-46, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26304769

ABSTRACT

Product detection studies of C((3)P) atom reactions with ethylene, C2H4(X(1)Ag) and propylene, C3H6(X(1)A') are carried out in a flow tube reactor at 332 K and 4 Torr (553.3 Pa) under multiple collision conditions. Ground state carbon atoms are generated by 193 nm laser photolysis of carbon suboxide, C3O2 in a buffer of helium. Thermalized reaction products are detected using tunable VUV photoionization and time of flight mass spectrometry. For C((3)P) + ethylene, propargyl (C3H3) is detected as the only molecular product in agreement with previous studies on this reaction. The temporal profiles of the detected ions are used to discriminate C((3)P) reaction products from side reaction products. For C((3)P) + propylene, two reaction channels are identified through the detection of methyl (CH3) and propargyl (C3H3) radicals for the first channel and C4H5 for the second one. Franck-Condon Factor simulations are employed to infer the C4H5-isomer distribution. The measured 1 : 4 ratio for the i-C4H5 isomer relative to the methylpropargyl isomers is similar to the C4H5 isomer distribution observed in low-pressure flames and differs from crossed molecular beams data. The accuracy of these isomer distributions is discussed in view of large uncertainties on the photoionization spectra of the pure C4H5 isomers.

SELECTION OF CITATIONS
SEARCH DETAIL
...