Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care ; 26(1): 225, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879765

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) has been reported as a frequent complication of critical COVID-19. We aimed to evaluate the occurrence of AKI and use of kidney replacement therapy (KRT) in critical COVID-19, to assess patient and kidney outcomes and risk factors for AKI and differences in outcome when the diagnosis of AKI is based on urine output (UO) or on serum creatinine (sCr). METHODS: Multicenter, retrospective cohort analysis of patients with critical COVID-19 in seven large hospitals in Belgium. AKI was defined according to KDIGO within 21 days after ICU admission. Multivariable logistic regression analysis was used to explore the risk factors for developing AKI and to assess the association between AKI and ICU mortality. RESULTS: Of 1286 patients, 85.1% had AKI, and KRT was used in 9.8%. Older age, obesity, a higher APACHE II score and use of mechanical ventilation at day 1 of ICU stay were associated with an increased risk for AKI. After multivariable adjustment, all AKI stages were associated with ICU mortality. AKI was based on sCr in 40.1% and UO in 81.5% of patients. All AKI stages based on sCr and AKI stage 3 based on UO were associated with ICU mortality. Persistent AKI was present in 88.6% and acute kidney disease (AKD) in 87.6%. Rapid reversal of AKI yielded a better prognosis compared to persistent AKI and AKD. Kidney recovery was observed in 47.4% of surviving AKI patients. CONCLUSIONS: Over 80% of critically ill COVID-19 patients had AKI. This was driven by the high occurrence rate of AKI defined by UO criteria. All AKI stages were associated with mortality (NCT04997915).


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Belgium/epidemiology , COVID-19/complications , Cohort Studies , Critical Illness , Hospitals , Humans , Intensive Care Units , Retrospective Studies
2.
Sci Rep ; 11(1): 13815, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226610

ABSTRACT

Growing evidence indicates that prorenin receptor (PRR) is upregulated in collecting duct (CD) of diabetic kidney. Prorenin is secreted by the principal CD cells, and is the natural ligand of the PRR. PRR activation stimulates fibrotic factors, including fibronectin, collagen, and transforming growth factor-ß (TGF-ß) contributing to tubular fibrosis. However, whether high glucose (HG) contributes to this effect is unknown. We tested the hypothesis that HG increases the abundance of PRR at the plasma membrane of the CD cells, thus contributing to the stimulation of downstream fibrotic factors, including TGF-ß, collagen I, and fibronectin. We used streptozotocin (STZ) male Sprague-Dawley rats to induce hyperglycemia for 7 days. At the end of the study, STZ-induced rats showed increased prorenin, renin, and angiotensin (Ang) II in the renal inner medulla and urine, along with augmented downstream fibrotic factors TGF-ß, collagen I, and fibronectin. STZ rats showed upregulation of PRR in the renal medulla and preferential distribution of PRR on the apical aspect of the CD cells. Cultured CD M-1 cells treated with HG (25 mM for 1 h) showed increased PRR in plasma membrane fractions compared to cells treated with normal glucose (5 mM). Increased apical PRR was accompanied by upregulation of TGF-ß, collagen I, and fibronectin, while PRR knockdown prevented these effects. Fluorescence resonance energy transfer experiments in M-1 cells demonstrated augmented prorenin activity during HG conditions. The data indicate HG stimulates profibrotic factors by inducing PRR translocation to the plasma membrane in CD cells, which in perspective, might be a novel mechanism underlying the development of tubulointerstitial fibrosis in diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/genetics , Glucose/metabolism , Kidney Tubules, Collecting/metabolism , Receptors, Cell Surface/genetics , Animals , Collagen/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Disease Models, Animal , Fibronectins/genetics , Gene Expression Regulation/drug effects , Humans , Hyperglycemia/genetics , Hyperglycemia/metabolism , Hyperglycemia/pathology , Kidney Tubules, Collecting/pathology , Rats , Transforming Growth Factor beta/genetics , Prorenin Receptor
3.
Biol Sex Differ ; 8: 18, 2017.
Article in English | MEDLINE | ID: mdl-28572913

ABSTRACT

BACKGROUND: Sexual difference has been shown in the pathogenesis of chronic kidney disease induced by hypertension. Females are protected from hypertension and related end-organ damage. Augmentation of renal proximal tubular angiotensinogen (AGT) expression can promote intrarenal angiotensin formation and the development of associated hypertension and kidney injury. Female rodents exhibit lower intrarenal AGT levels than males under normal conditions, suggesting that the suppressed intrarenal AGT production by programmed mechanisms in females may provide protection from these diseases. This study was performed to examine whether epigenetic mechanisms serve as repressors of AGT. METHODS: Male and female Sprague Dawley rats were used to investigate sex differences of systemic, hepatic, and intrarenal AGT levels. All histone deacetylase (HDAC) mRNA levels in the kidneys were determined using a PCR array. HDAC9 protein expression in the kidneys and cultured renal proximal tubular cells (PTC) was analyzed by Western blot analysis and immunohistochemistry. The effects of HDAC9 on AGT expression were evaluated by using an inhibitor and siRNA. ChIP assay was performed to investigate the interaction between the AGT promoter and HDAC9. RESULTS: Plasma and liver AGT levels did not show differences between male and female Sprague-Dawley rats. In contrast, females exhibited lower AGT levels than males in the renal cortex and urine. In the absence of supplemented sex hormones, primary cultured renal cortical cells isolated from female rats sustained lower AGT levels than those from males, suggesting that the kidneys have a unique mechanism of AGT regulation controlled by epigenetic factors rather than sex hormones. HDAC9 mRNA and protein levels were higher in the renal cortex of female rats versus male rats (7.09 ± 0.88, ratio to male) while other HDACs did not exhibit a sex difference. HDAC9 expression was localized in PTC which are the primary source of intrarenal AGT. Importantly, HDAC9 knockdown augmented AGT mRNA (1.92 ± 0.35-fold) and protein (2.25 ± 0.50-fold) levels, similar to an HDAC9 inhibitor. Furthermore, an interaction between HDAC9 and a distal 5' flanking region of AGT via a histone complex containing H3 and H4 was demonstrated. CONCLUSIONS: These results indicate that HDAC9 is a novel suppressing factor involved in AGT regulation in PTC, leading to low levels of intrarenal AGT in females. These findings will help to delineate mechanisms underlying sex differences in the development of hypertension and renin-angiotensin system (RAS) associated kidney injury.


Subject(s)
Angiotensinogen/genetics , Epigenetic Repression , Histone Deacetylases/genetics , Kidney/physiology , Sex Characteristics , Angiotensinogen/metabolism , Animals , Female , Hepatocytes/metabolism , Kidney/metabolism , Male , Methyltransferases/metabolism , Primary Cell Culture , Promoter Regions, Genetic , Rats, Sprague-Dawley
4.
Physiol Rep ; 5(7)2017 Apr.
Article in English | MEDLINE | ID: mdl-28373410

ABSTRACT

In the collecting duct (CD), the interactions of renin angiotensin system (RAS) and kallikrein-kinin system (KKS) modulate Na+ reabsorption, volume homeostasis, and blood pressure. In this study, we used a mouse kidney cortical CD cell line (M-1 cells) to test the hypothesis that in the CD, the activation of bradykinin B2 receptor (B2R) increases renin synthesis and release. Physiological concentrations of bradykinin (BK) treatment of M-1 cells increased renin mRNA and prorenin and renin protein contents in a dose-dependent manner and increased threefold renin content in the cell culture media. These effects were mediated by protein kinase C (PKC) independently of protein kinase A (PKA) because B2R antagonism with Icatibant and PKC inhibition with calphostin C, prevented these responses, but PKA inhibition with H89 did not modify the effects elicited by the B2R activation. BK-dependent stimulation of renin gene expression in CD cells also involved nitric oxide (NO) pathway because increased cGMP levels and inhibition of NO synthase with L-NAME prevented it. Complementary renin immunohistochemical studies performed in kidneys from mice with conventional B2R knockout and conditional B2R knockout in the CD, showed marked decreased renin immunoreactivity in CD, regardless of the renin presence in juxtaglomerular cells in the knockout mice. These results indicate that the activation of B2R increases renin synthesis and release by the CD cells through PKC stimulation and NO release, which support further the interactions between the RAS and KKS.


Subject(s)
Bradykinin/pharmacology , Kidney Cortex/metabolism , Nitric Oxide/metabolism , Receptor, Bradykinin B2/metabolism , Renin/metabolism , Animals , Bradykinin/analogs & derivatives , Bradykinin B2 Receptor Antagonists/pharmacology , Cell Line , Isoquinolines/pharmacology , Kidney Cortex/cytology , Kidney Cortex/drug effects , Mice , NG-Nitroarginine Methyl Ester/pharmacology , Naphthalenes/pharmacology , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Sulfonamides/pharmacology
5.
Can J Physiol Pharmacol ; 94(7): 758-68, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27172427

ABSTRACT

Pulmonary hypertension is a rare disorder that, without treatment, is progressive and fatal within 3-4 years. Current treatment involves a diverse group of drugs that target the pulmonary vascular bed. In addition, strategies that increase nitric oxide (NO) formation have a beneficial effect in rodents and patients. Nebivolol, a selective ß1 adrenergic receptor-blocking agent reported to increase NO production and stimulate ß3 receptors, has vasodilator properties suggesting that it may be beneficial in the treatment of pulmonary hypertension. The present study was undertaken to determine whether nebivolol has a beneficial effect in monocrotaline-induced (60 mg/kg) pulmonary hypertension in the rat. These results show that nebivolol treatment (10 mg/kg, once or twice daily) attenuates pulmonary hypertension, reduces right ventricular hypertrophy, and improves pulmonary artery remodeling in monocrotaline-induced pulmonary hypertension. This study demonstrates the presence of ß3 adrenergic receptor immunoreactivity in pulmonary arteries and airways and that nebivolol has pulmonary vasodilator activity. Studies with ß3 receptor agonists (mirabegron, BRL 37344) and antagonists suggest that ß3 receptor-mediated decreases in systemic arterial pressure occur independent of NO release. Our results suggest that nebivolol, a selective vasodilating ß1 receptor antagonist that stimulates ß3 adrenergic receptors and induces vasodilation by increasing NO production, may be beneficial in treating pulmonary hypertensive disorders.


Subject(s)
Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Monocrotaline/toxicity , Nebivolol/therapeutic use , Vasodilator Agents/therapeutic use , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cardiac Output/drug effects , Cardiac Output/physiology , Hypertension, Pulmonary/pathology , Rats , Rats, Sprague-Dawley , Treatment Outcome
6.
Am J Physiol Renal Physiol ; 309(10): F880-8, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26268270

ABSTRACT

In contrast to the negative feedback of angiotensin II (ANG II) on juxtaglomerular renin, ANG II stimulates renin in the principal cells of the collecting duct (CD) in rats and mice via ANG II type 1 (AT1R) receptor, independently of blood pressure. In vitro data indicate that CD renin is augmented by AT1R activation through protein kinase C (PKC), but the exact mechanisms are unknown. We hypothesize that ANG II stimulates CD renin synthesis through AT1R via PKC and the subsequent activation of cAMP/PKA/CREB pathway. In M-1 cells, ANG II increased cAMP, renin mRNA (3.5-fold), prorenin, and renin proteins, as well as renin activity in culture media (2-fold). These effects were prevented by PKC inhibition with calphostin C, PKC-α dominant negative, and by PKA inhibition. Forskolin-induced increases in cAMP and renin expression were prevented by calphostin C. PKC inhibition and Ca2+ depletion impaired ANG II-mediated CREB phosphorylation and upregulation of renin. Adenylate cyclase 6 (AC) siRNA remarkably attenuated the ANG II-dependent upregulation of renin mRNA. Physiological activation of AC with vasopressin increased renin expression in M-1 cells. The results suggest that the ANG II-dependent upregulation of renin in the CD depends on PKC-α, which allows the augmentation of cAMP production and activation of PKA/CREB pathway via AC6. This study defines the intracellular signaling pathway involved in the ANG II-mediated stimulation of renin in the CD. This is a novel mechanism responsible for the regulation of local renin-angiotensin system in the distal nephron.


Subject(s)
Angiotensin II/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Protein Kinase C-alpha/metabolism , Renin/metabolism , Animals , Blood Pressure/drug effects , Mice , Phosphorylation , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Signal Transduction/physiology , Up-Regulation/drug effects
7.
Am J Physiol Renal Physiol ; 307(8): F962-70, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25143455

ABSTRACT

The (pro)renin receptor [(P)RR] upregulates cyclooxygenase-2 (COX-2) in inner medullary collecting duct (IMCD) cells through ERK1/2. Intrarenal COX-2 and (P)RR are upregulated during chronic ANG II infusion. However, the duration of COX-2 and (P)RR upregulation has not been determined. We hypothesized that during the early phase of ANG II-dependent hypertension, membrane-bound (P)RR and COX-2 are augmented in the renal medulla, serving to buffer the hypertensinogenic and vasoconstricting effects of ANG II. In Sprague-Dawley rats infused with ANG II (0.4 µg·min(-1)·kg(-1)), systolic blood pressure (BP) increased by day 7 (162 ± 5 vs. 114 ± 10 mmHg) and continued to increase by day 14 (198 ± 15 vs. 115 ± 13 mmHg). Membrane-bound (P)RR was augmented at day 3 coincident with phospho-ERK1/2 levels, COX-2 expression, and PGE2 in the renal medulla. In contrast, membrane-bound (P)RR was reduced and COX-2 protein levels were not different from controls by day 14. In cultured IMCD cells, ANG II increased secretion of the soluble (P)RR. In anesthetized rats, COX-2 inhibition decreased the glomerular filtration rate (GFR) and renal blood flow (RBF) during the early phase of ANG II infusion without altering BP. However, at 14 days of ANG II infusions, COX-2 inhibition decreased mean arterial BP (MABP), RBF, and GFR. Thus, during the early phase of ANG II-dependent hypertension, the increased (P)RR and COX-2 expression in the renal medulla may contribute to attenuate the vasoconstrictor effects of ANG II on renal hemodynamics. In contrast, at 14 days the reductions in RBF and GFR caused by COX-2 inhibition paralleled the reduced MABP, suggesting that vasoconstrictor COX-2 metabolites contribute to ANG II hypertension.


Subject(s)
Cyclooxygenase 2/biosynthesis , Hypertension/metabolism , Receptors, Cell Surface/biosynthesis , Angiotensin II/pharmacology , Animals , Blood Pressure/drug effects , Cyclooxygenase 2 Inhibitors/pharmacology , Kidney Cortex/metabolism , Kidney Medulla/metabolism , Male , Prostaglandins E/biosynthesis , Rats, Sprague-Dawley , Prorenin Receptor
8.
Hypertension ; 61(2): 443-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23184385

ABSTRACT

During renin-angiotensin system activation, cyclooxygenase-2 (COX-2)-derived prostaglandins attenuate the pressor and antinatriuretic effects of angiotensin II (AngII) in the renal medulla. The (pro)renin receptor (PRR) is abundantly expressed in the collecting ducts (CD) and its expression is augmented by AngII. PRR overexpression upregulates COX-2 via mitogen-activated kinases/extracellular regulated kinases 1/2 in renal tissues; however, it is not clear whether this effect occurs independently or in concert with AngII type 1 receptor (AT1R) activation. We hypothesized that PRR activation stimulates COX-2 expression independently of AT(1)R in primary cultures of rat renal inner medullary cells. The use of different cell-specific immunomarkers (aquaporin-2 for principal cells, anion exchanger type 1 for intercalated type-A cells, and tenascin C for interstitial cells) and costaining for AT(1)R, COX-2, and PRR revealed that PRR and COX-2 were colocalized in intercalated and interstitial cells whereas principal cells did not express PRR or COX-2. In normal rat kidney sections, PRR and COX-2 were colocalized in intercalated and interstitial cells. In rat renal inner medullary cultured cells, treatment with AngII (100 nmol/L) increased COX-2 expression via AT(1)R. In addition, AngII and rat recombinant prorenin (100 nmol/L) treatments increased extracellular regulated kinases 1/2 phosphorylation, independently. Importantly, rat recombinant prorenin upregulated COX-2 expression in the presence of AT(1)R blockade. Inhibition of mitogen-activated kinases/extracellular regulated kinases 1/2 suppressed COX-2 upregulation mediated by either AngII or rat recombinant prorenin. Furthermore, PRR knockdown using PRR-short hairpin RNA blunted the rat recombinant prorenin-mediated upregulation of COX-2. These results indicate that COX-2 expression is upregulated by activation of either PRR or AT(1)R via mitogen-activated kinases/extracellular regulated kinases 1/2 in rat renal inner medullary cells.


Subject(s)
Angiotensin II/pharmacology , Cyclooxygenase 2/metabolism , Kidney Medulla/metabolism , Receptors, Cell Surface/metabolism , Renin-Angiotensin System/physiology , Animals , Cells, Cultured , Cyclooxygenase 2/genetics , Kidney Medulla/cytology , Kidney Medulla/drug effects , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Phosphorylation/drug effects , Rats , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, Cell Surface/genetics , Renin-Angiotensin System/drug effects , Up-Regulation , Prorenin Receptor
9.
Am J Physiol Renal Physiol ; 303(1): F105-9, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22442212

ABSTRACT

Increased dietary salt triggers oxidative stress and kidney injury in salt-sensitive hypertension; however, the mechanism for sensing increased extracellular Na(+) concentration ([Na(+)]) remains unclear. A Na(+)-activated Na(+) channel (Na sensor) described in the brain operates as a sensor of extracellular fluid [Na(+)]; nonetheless, its presence in the kidney has not been established. In the present study, we demonstrated the gene expression of the Na sensor by RT-PCR and Western blotting in the Sprague-Dawley rat kidney. Using immunofluorescence, the Na sensor was localized to the luminal side in tubular epithelial cells of collecting ducts colocalizing with aquaporin-2, a marker of principal cells, and in thick ascending limb, colocalizing with the glycoprotein Tamm-Horsfall. To determine the effect of a high-salt diet (HSD) on Na sensor gene expression, we quantified its transcript and protein levels primarily in renal medullas from control rats and rats subjected to 8% NaCl for 7 days (n = 5). HSD increased Na sensor expression levels (mRNA: from 1.2 ± 0.2 to 5.1 ± 1.3 au; protein: from 0.98 ± 0.15 to 1.74 ± 0.28 au P < 0.05) in the kidney medulla, but not in the cortex. These data indicate that rat kidney epithelial cells of the thick ascending limb and principal cells of the collecting duct possess a Na sensor that is upregulated by HSD, suggesting an important role in monitoring changes in tubular fluid [Na(+)].


Subject(s)
Epithelial Cells/metabolism , Kidney/metabolism , Sodium Channels/metabolism , Sodium Chloride, Dietary/administration & dosage , Animals , Aquaporin 2/genetics , Aquaporin 2/metabolism , Epithelial Cells/drug effects , Gene Expression , Kidney/drug effects , Male , Rats , Rats, Sprague-Dawley , Sodium Channels/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...