Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(19)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33008121

ABSTRACT

Most bones of the human body form and heal through endochondral ossification, whereby hypertrophic cartilage (HyC) is formed and subsequently remodeled into bone. We previously demonstrated that HyC can be engineered from human mesenchymal stromal cells (hMSC), and subsequently devitalized by apoptosis induction. The resulting extracellular matrix (ECM) tissue retained osteoinductive properties, leading to ectopic bone formation. In this study, we aimed at engineering and devitalizing upscaled quantities of HyC ECM within a perfusion bioreactor, followed by in vivo assessment in an orthotopic bone repair model. We hypothesized that the devitalized HyC ECM would outperform a clinical product currently used for bone reconstructive surgery. Human MSC were genetically engineered with a gene cassette enabling apoptosis induction upon addition of an adjuvant. Engineered hMSC were seeded, differentiated, and devitalized within a perfusion bioreactor. The resulting HyC ECM was subsequently implanted in a 10-mm rabbit calvarial defect model, with processed human bone (Maxgraft®) as control. Human MSC cultured in the perfusion bioreactor generated a homogenous HyC ECM and were efficiently induced towards apoptosis. Following six weeks of in vivo implantation, microcomputed tomography and histological analyses of the defects revealed an increased bone formation in the defects filled with HyC ECM as compared to Maxgraft®. This work demonstrates the suitability of engineered devitalized HyC ECM as a bone substitute material, with a performance superior to a state-of-the-art commercial graft. Streamlined generation of the devitalized tissue transplant within a perfusion bioreactor is relevant towards standardized and automated manufacturing of a clinical product.


Subject(s)
Cartilage/growth & development , Cell Differentiation/genetics , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Skull/growth & development , Animals , Apoptosis/genetics , Bone Remodeling/genetics , Bone Substitutes/therapeutic use , Cartilage/metabolism , Cartilage/transplantation , Extracellular Matrix/genetics , Humans , Mesenchymal Stem Cell Transplantation , Osteogenesis/genetics , Rabbits , Skull/physiopathology , Skull/surgery , Tissue Engineering/methods , Tissue Scaffolds , Wound Healing/genetics
2.
Adv Drug Deliv Rev ; 129: 285-294, 2018 04.
Article in English | MEDLINE | ID: mdl-29357301

ABSTRACT

Bone tissue has a strong intrinsic regenerative capacity, thanks to a delicate and complex interplay of cellular and molecular processes, which tightly involve the immune system. Pathological settings of anatomical, biomechanical or inflammatory nature may lead to impaired bone healing. Innovative strategies to enhance bone repair, including the delivery of osteoprogenitor cells or of potent cytokines/morphogens, indicate the potential of 'orthobiologics', but are not fully satisfactory. Here, we review different approaches based on the delivery of regenerative cues produced by cells but in cell-free, possibly off-the-shelf configurations. Such strategies exploit the paracrine effect of the secretome of mesenchymal stem/stromal cells, presented in soluble form, shuttled through extracellular vesicles, or embedded within the network of extracellular matrix molecules. In addition to osteoinductive molecules, attention is given to factors targeting the resident immune cells, to reshape inflammatory and immunity processes from scarring to regenerative patterns.


Subject(s)
Bone and Bones/immunology , Extracellular Matrix/immunology , Extracellular Vesicles/immunology , Mesenchymal Stem Cells/immunology , Wound Healing/immunology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...