Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38639580

ABSTRACT

InGaAs/InP-based negative-feedback avalanche diodes (NFADs) have been demonstrated to be an excellent option for photon detection at telecom wavelengths in quantum communication applications, where photon arrival times are random. However, it is well-known that the operation of NFADs at low temperatures (193 K or below) is crucial to minimize the effects of afterpulsing and high dark count rates (DCRs). In this work, we present a new versatile readout electronics system with active afterpulse suppression that also offers flexible cooling options. Through the characterization of two NFAD detectors from Princeton Lightwave, Inc. and a thorough evaluation of our electronics' performance under various operating conditions, we demonstrate the effectiveness of this readout system in improving the performance of NFAD-based photon detectors. At the optimal bias for NFADs, our electronics were able to significantly reduce the afterpulsing probability by a factor of 200 for dead times ranging from 5 to 20 µs following each detection event. This helps to keep the total DCRs at around 100 counts per second or less for a 20 µs hold-off time. The versatility of our detection system makes NFADs a cost-effective alternative to more complex detectors, such as superconducting nanowire single-photon detectors, in the research of long-distance quantum communications and low-noise single photon detectors at telecommunication wavelengths.

2.
Opt Express ; 28(14): 20943-20953, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680144

ABSTRACT

The Hong-Ou-Mandel (HOM) effect ranks among the most notable quantum interference phenomena, and is central to many applications in quantum technologies. The fundamental effect appears when two independent and indistinguishable photons are superimposed on a beam splitter, which achieves a complete suppression of coincidences between the two output ports. Much less studied, however, is when the fields share coherence (continuous-wave lasers) or mode envelope properties (pulsed lasers). In this case, we expect the existence of two distinct and concurrent HOM interference regimes: the traditional HOM dip on the coherence length time scale, and a structured HOM interference pattern on the pulse length scale. We develop a theoretical framework that describes HOM interference for laser fields having arbitrary temporal waveforms and only partial overlap in time. We observe structured HOM interference from a continuous-wave laser via fast polarization modulation and time-resolved single photon detection fast enough to resolve these structured HOM dips.

3.
Opt Express ; 27(26): 37214-37223, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878505

ABSTRACT

Despite its widespread use in fiber optics, encoding quantum information in photonic time-bin states is usually considered impractical for free-space quantum communication as turbulence-induced spatial distortion impedes the analysis of time-bin states at the receiver. Here, we demonstrate quantum key distribution using time-bin photonic states distorted by turbulence and depolarization during free-space transmission. Utilizing a novel analyzer apparatus, we observe stable quantum bit error ratios of 5.32 %, suitable for generating secure keys, despite significant wavefront distortions and polarization fluctuations across a 1.2 km channel. This shows the viability of time-bin quantum communication over long-distance free-space channels, which will simplify direct fiber/free-space interfaces and enable new approaches for practical free-space quantum communication over multi-mode, turbulent, or depolarizing channels.

4.
Opt Express ; 26(16): 21020-21032, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119408

ABSTRACT

Quantum key distribution (QKD) promises information theoretic secure key as long as the device performs as assumed in the theoretical model. One of the assumptions is an absence of information leakage about individual photon detection outcomes of the receiver unit. Here we investigate the information leakage from a QKD receiver due to photon emission caused by detection events in single-photon detectors (backflash). We test commercial silicon avalanche photodiodes and a photomultiplier tube, and find that the former emit backflashes. We study the spectral, timing and polarization characteristics of these backflash photons. We experimentally demonstrate on a free-space QKD receiver that an eavesdropper can distinguish which detector has clicked inside it, and thus acquire secret information. A set of countermeasures both in theory and on the physical devices are discussed.

5.
EPJ Quantum Technol ; 4(1): 10, 2017.
Article in English | MEDLINE | ID: mdl-31179201

ABSTRACT

Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6 , 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as - 86 ∘ C . This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to + 100 ∘ C .

6.
EPJ Quantum Technol ; 4(1): 11, 2017.
Article in English | MEDLINE | ID: mdl-31179202

ABSTRACT

Avalanche photodiodes (APDs) are a practical option for space-based quantum communications requiring single-photon detection. However, radiation damage to APDs significantly increases their dark count rates and thus reduces their useful lifetimes in orbit. We show that high-power laser annealing of irradiated APDs of three different models (Excelitas C30902SH, Excelitas SLiK, and Laser Components SAP500S2) heals the radiation damage and several APDs are restored to typical pre-radiation dark count rates. Of nine samples we test, six APDs were thermally annealed in a previous experiment as another solution to mitigate the radiation damage. Laser annealing reduces the dark count rates further in all samples with the maximum dark count rate reduction factor varying between 5.3 and 758 when operating at - 80 ∘ C . This indicates that laser annealing is a more effective method than thermal annealing. The illumination power to reach these reduction factors ranges from 0.8 to 1.6 W. Other photon detection characteristics, such as photon detection efficiency, timing jitter, and afterpulsing probability, fluctuate but the overall performance of quantum communications should be largely unaffected by these variations. These results herald a promising method to extend the lifetime of a quantum satellite equipped with APDs.

7.
Opt Express ; 23(26): 33437-47, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26832008

ABSTRACT

Technological realities limit terrestrial quantum key distribution (QKD) to single-link distances of a few hundred kilometers. One promising avenue for global-scale quantum communication networks is to use low-Earth-orbit satellites. Here we report the first demonstration of QKD from a stationary transmitter to a receiver platform traveling at an angular speed equivalent to a 600 km altitude satellite, located on a moving truck. We overcome the challenges of actively correcting beam pointing, photon polarization and time-of-flight. Our system generates an asymptotic secure key at 40 bits/s.

8.
Opt Express ; 21(5): 6205-12, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482189

ABSTRACT

We demonstrate a novel polarization-entangled photon-pair source based on standard birefringent polarization-maintaining optical fiber. The source consists of two stretches of fiber spliced together with perpendicular polarization axes, and has the potential to be fully fiber-based, with all bulk optics replaced with in-fiber equivalents. By modelling the temporal walk-off in the fibers, we implement compensation necessary for the photon creation processes in the two stretches of fiber to be indistinguishable. Our source subsequently produces a high quality entangled state having (92.2 ± 0.2) % fidelity with a maximally entangled Bell state.

9.
Neural Netw ; 32: 339-48, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22386501

ABSTRACT

A biologically inspired approach to learning temporally correlated patterns from a spiking silicon retina is presented. Spikes are generated from the retina in response to relative changes in illumination at the pixel level and transmitted to a feed-forward spiking neural network. Neurons become sensitive to patterns of pixels with correlated activation times, in a fully unsupervised scheme. This is achieved using a special form of Spike-Timing-Dependent Plasticity which depresses synapses that did not recently contribute to the post-synaptic spike activation, regardless of their activation time. Competitive learning is implemented with lateral inhibition. When tested with real-life data, the system is able to extract complex and overlapping temporally correlated features such as car trajectories on a freeway, after only 10 min of traffic learning. Complete trajectories can be learned with a 98% detection rate using a second layer, still with unsupervised learning, and the system may be used as a car counter. The proposed neural network is extremely robust to noise and it can tolerate a high degree of synaptic and neuronal variability with little impact on performance. Such results show that a simple biologically inspired unsupervised learning scheme is capable of generating selectivity to complex meaningful events on the basis of relatively little sensory experience.


Subject(s)
Artificial Intelligence , Neuronal Plasticity , Retina/physiology , Algorithms , Computer Simulation , Long-Term Potentiation , Models, Genetic , Motor Vehicles , Neural Networks, Computer , Neurons/physiology , Reproducibility of Results , Signal-To-Noise Ratio , Silicon , Synapses/physiology , Synaptic Transmission/physiology
11.
Chimia (Aarau) ; 64(6): 414-20, 2010.
Article in English | MEDLINE | ID: mdl-21137718

ABSTRACT

Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field.


Subject(s)
Electronics , Nanotechnology , Nanotubes, Carbon
12.
Chemphyschem ; 11(16): 3541-6, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20973021

ABSTRACT

Surface modification at the nanometer scale is a challenge for the future of molecular electronics. In particular, the precise anchoring and electrical addressing of biological scaffolds such as complex DNA nanonetworks is of importance for generating bio-directed assemblies of nano-objects for nanocircuit purposes. Herein, we consider the individual modification of nanoelectrodes with different oligonucleotide sequences by an electrochemically driven co-polymerization process of pyrrole and modified oligonucleotide sequences bearing pyrrole monomers. We demonstrate that this one-step technique presents the advantages of simplicity, localization of surface modification, mechanical, biological and chemical stability of the coatings, and high lateral resolution.


Subject(s)
Oligonucleotides/chemistry , Polymers/chemistry , Pyrroles/chemistry , Base Sequence , Electrochemical Techniques , Microelectrodes , Microscopy, Atomic Force , Nanotechnology
14.
Nanoscale ; 2(1): 139-44, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20648376

ABSTRACT

Recently, the organisation of magnetic molecules on carbon nanotubes has raised much interest due to their possible interesting contribution to molecular spintronics. In this paper, we describe the assembly on SWNTs of a magnetic polyoxometalate encompassing a single cobalt ion (CoPOM) and its isostructural diamagnetic zinc analogue (ZnPOM). The simple magnetic behaviour of CoPOM and the availability of its diamagnetic counterpart render these POM@NTs systems interesting model compounds for the study of molecular electronics devices based on carbon nanotubes and magnetic molecules. The success and rate of the grafting have been investigated by electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, Raman scattering and magnetisation measurements. These characterisations altogether demonstrate the preservation of the structural and magnetic properties of the molecules upon functionalisation and the existence of an electronic communication between the molecules and the nanotubes.


Subject(s)
Magnetics , Nanotubes, Carbon/chemistry , Tungsten Compounds/chemistry , Cobalt , Electrochemical Techniques , Photoelectron Spectroscopy , Spectrum Analysis, Raman , Zinc
16.
Angew Chem Int Ed Engl ; 48(27): 4949-52, 2009.
Article in English | MEDLINE | ID: mdl-19492385

ABSTRACT

A POM to remember: Hexanuclear Fe(III) polyoxometalate (POM) single-molecule magnets (see structure) can be noncovalently assembled on the surface of single-wall carbon nanotubes. Complementary characterization techniques (see TEM image and magnetic hysteresis loops) demonstrate the integrity and bistability of the individual molecules, which could be used to construct single-molecule memory devices.

17.
Chem Commun (Camb) ; (6): 683-5, 2009 Feb 14.
Article in English | MEDLINE | ID: mdl-19322421

ABSTRACT

We report here the first realization of an artificial branched DNA template where a single wall carbon nanotube is positioned with the necessary geometry of an individually gated field effect transistor.


Subject(s)
DNA/chemistry , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Biomimetics , DNA/metabolism , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/metabolism , Streptavidin/chemistry , Streptavidin/metabolism , Transistors, Electronic
18.
Chemistry ; 15(9): 2101-10, 2009.
Article in English | MEDLINE | ID: mdl-19142944

ABSTRACT

On the tube: The coupling of diazonium ions onto single-walled carbon nanotubes is shown to proceed through a radical chain reaction by kinetic analysis of the absorption peak drop (see picture). Radical species are also revealed by ESR. Metallic (m) nanotubes play a special catalytic role in the functionalization of semiconducting (sc) nanotubes.Due to its simplicity and versatility, diazonium coupling is the most widely used method for carbon nanotube (CNT) functionalization to increase CNT processability and add new functionalities. Yet, its mechanism is so far mostly unknown. Herein, we use kinetic analysis to shed light on this complex mechanism. A free-radical chain reaction is revealed by absorption spectroscopy and ESR. Metallic CNTs are shown to play an unexpected catalytic role. The step determining the selectivity towards metallic CNTs is identified by a Hammett correlation. A mechanistic model is proposed that predicts reactivity and selectivity as a function of diazonium electrophilicity and metallic-to-semiconducting CNT ratio, thus opening perspectives of controlled high-yield functionalization and purification.


Subject(s)
Diazonium Compounds/chemistry , Nanotubes, Carbon/chemistry , Electron Spin Resonance Spectroscopy , Kinetics , Molecular Structure
19.
Appl Opt ; 47(35): 6530-4, 2008 Dec 10.
Article in English | MEDLINE | ID: mdl-19079461

ABSTRACT

Thermal diffusion properties of interfaces are measured using self-induced surface thermal lensing with a single laser beam. The time evolution of the reflected beam reveals information on heat diffusion away from the interface. Unambiguous correlation between measured signal and thermal diffusivity is shown, theoretically and experimentally, from which calibration curves are obtained. Being simpler and less sensitive to vibrations and misalignments, the technique offers definite advantages over standard two-beam (pump-probe) methods.

20.
Nano Lett ; 8(11): 3619-25, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18947213

ABSTRACT

The high sensitivity of nanotube transistors is used for the first time as a probe to study charge dynamics at a dielectric/polymer (polythiophene) interface, an inorganic/organic junction of particular importance for organic solar cells, and organic field effect transistors (OFETs). A carbon nanotube field effect transistor is coated with a thin film of a photoconductive polymer and photoexcited so as to generate carriers in the structure. Comparison between devices using SiO2 and TiO2 as gate dielectric reveals the critical role of the dielectric and clearly elucidates the relative contributions of the polymer and the dielectric layers on the separation, trapping, and relaxation of photogenerated charges.

SELECTION OF CITATIONS
SEARCH DETAIL
...