Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 01 07.
Article in English | MEDLINE | ID: mdl-31909711

ABSTRACT

Aneuploidy is highly detrimental during development yet common in cancers and pathogenic fungi - what gives rise to differences in aneuploidy tolerance remains unclear. We previously showed that wild isolates of Saccharomyces cerevisiae tolerate chromosome amplification while laboratory strains used as a model for aneuploid syndromes do not. Here, we mapped the genetic basis to Ssd1, an RNA-binding translational regulator that is functional in wild aneuploids but defective in laboratory strain W303. Loss of SSD1 recapitulates myriad aneuploidy signatures previously taken as eukaryotic responses. We show that aneuploidy tolerance is enabled via a role for Ssd1 in mitochondrial physiology, including binding and regulating nuclear-encoded mitochondrial mRNAs, coupled with a role in mitigating proteostasis stress. Recapitulating ssd1Δ defects with combinatorial drug treatment selectively blocked proliferation of wild-type aneuploids compared to euploids. Our work adds to elegant studies in the sensitized laboratory strain to present a mechanistic understanding of eukaryotic aneuploidy tolerance.


Subject(s)
Aneuploidy , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
Methods Mol Biol ; 1402: 73-100, 2016.
Article in English | MEDLINE | ID: mdl-26721485

ABSTRACT

Sequencing-based whole-transcriptome analysis (i.e., RNA-Seq) can be a powerful tool when used to measure gene expression, detect novel transcripts, characterize transcript isoforms, and identify sequence polymorphisms. However, this method can be inefficient when the goal is to study only one component of the transcriptome, such as long noncoding RNAs (lncRNAs), which constitute only a small fraction of transcripts in a total RNA sample. Here, we describe a target enrichment method where a total RNA sample is converted to a sequencing-ready cDNA library and hybridized to a complex pool of lncRNA-specific biotinylated long oligonucleotide capture probes prior to sequencing. The resulting sequence data are highly enriched for the targets of interest, dramatically increasing the efficiency of next-generation sequencing approaches for the analysis of lncRNAs.


Subject(s)
RNA, Long Noncoding/genetics , Sequence Analysis, RNA/methods , Animals , Gene Expression Profiling/methods , Gene Library , High-Throughput Nucleotide Sequencing/methods , Humans , Polymerase Chain Reaction/methods , RNA Probes/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...