Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Res Cardiol ; 105(1): 73-87, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19639379

ABSTRACT

We investigated the contribution of the intracellular calcium (Ca (i) (2+) ) transient to acetylcholine (ACh)-mediated reduction of pacemaker frequency and cAMP content in rabbit sinoatrial nodal (SAN) cells. Action potentials (whole cell perforated patch clamp) and Ca (i) (2+) transients (Indo-1 fluorescence) were recorded from single isolated rabbit SAN cells, whereas intracellular cAMP content was measured in SAN cell suspensions using a cAMP assay (LANCE((R))). Our data show that the Ca (i) (2+) transient, like the hyperpolarization-activated "funny current" (I (f)) and the ACh-sensitive potassium current (I (K,ACh)), is an important determinant of ACh-mediated pacemaker slowing. When I (f) and I (K,ACh) were both inhibited, by cesium (2 mM) and tertiapin (100 nM), respectively, 1 micro M ACh was still able to reduce pacemaker frequency by 72%. In these I (f) and I (K,ACh)-inhibited SAN cells, good correlations were found between the ACh-mediated change in interbeat interval and the ACh-mediated change in Ca (i) (2+) transient decay (r (2) = 0.98) and slow diastolic Ca (i) (2+) rise (r (2) = 0.73). Inhibition of the Ca (i) (2+) transient by ryanodine (3 microM) or BAPTA-AM (5 microM) facilitated ACh-mediated pacemaker slowing. Furthermore, ACh depressed the Ca (i) (2+) transient and reduced the sarcoplasmic reticulum (SR) Ca(2+) content, all in a concentration-dependent fashion. At 1 microM ACh, the spontaneous activity and Ca (i) (2+) transient were abolished, but completely recovered when cAMP production was stimulated by forskolin (10 microM) and I (K,ACh) was inhibited by tertiapin (100 nM). Also, inhibition of the Ca (i) (2+) transient by ryanodine (3 microM) or BAPTA-AM (25 microM) exaggerated the ACh-mediated inhibition of cAMP content, indicating that Ca (i) (2+) affects cAMP production in SAN cells. In conclusion, muscarinic receptor stimulation inhibits the Ca (i) (2+) transient via a cAMP-dependent signaling pathway. Inhibition of the Ca (i) (2+) transient contributes to pacemaker slowing and inhibits Ca (i) (2+) -stimulated cAMP production. Thus, we provide functional evidence for the contribution of the Ca (i) (2+) transient to ACh-induced inhibition of pacemaker activity and cAMP content in rabbit SAN cells.


Subject(s)
Acetylcholine/metabolism , Calcium/metabolism , Cyclic AMP/metabolism , Receptors, Muscarinic/metabolism , Sinoatrial Node/metabolism , Animals , Egtazic Acid/analogs & derivatives , Muscarinic Agonists , Patch-Clamp Techniques , Rabbits , Ryanodine , Sarcoplasmic Reticulum/metabolism , Sinoatrial Node/cytology
2.
Heart Rhythm ; 6(10): 1485-92, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19716774

ABSTRACT

BACKGROUND: Omega-3 polyunsaturated fatty acids (omega3-PUFAs) from fish oil (FO) reduce heart rate in humans. The mechanism underlying this cardioprotective effect of FO is unknown. OBJECTIVE: We studied the effects of an FO diet on heart rate, pacemaker activity, and pacemaker current (I(f)) in sinoatrial node (SAN) cells. METHODS: Rabbits were fed a diet enriched with 2.5% (w/w) FO or 2.5% high oleic sunflower oil (SO) as control for 3 weeks. Heart rate was measured in Langendorff-perfused hearts. Pacemaker activity and I(f) were recorded using the perforated patch-clamp technique in isolated SAN cells. RESULTS: In SAN cells, the FO diet reduced I(f) density by approximately 30%, without changes in its voltage dependence, reversal potential, (de)activation kinetics, and sensitivity to beta-stimulation. Dietary FO significantly prolonged the cycle length in both isolated perfused hearts (337 +/- 8 [mean +/- SEM, n = 8] vs. 301 +/- 9 ms [n = 8]) and single cells (363 +/- 20 [n = 19] vs. 276 +/- 8 ms [n = 22]). In single cells, dietary FO significantly decreased the diastolic depolarization rate by 33% and prolonged the action potential by 27%, whereas other action potential parameters were unaltered. I(f) blockade experiments substantiated that the reduced diastolic depolarization rate in the FO group was partially caused by the I(f) density reduction. CONCLUSION: An FO diet prolongs the sinus cycle length because of, at least in part, a reduction in I(f) density. Our results explain FO-induced heart rate reduction and suggest FO as an alternative or adjunct to I(f)-lowering drugs.


Subject(s)
Biological Clocks/drug effects , Dietary Fats, Unsaturated/pharmacology , Fish Oils/pharmacology , Heart Rate/drug effects , Animals , Helianthus , In Vitro Techniques , Male , Oleic Acid/pharmacology , Rabbits , Sinoatrial Node/cytology , Sinoatrial Node/drug effects
3.
Cardiovasc Res ; 60(2): 288-97, 2003 Nov 01.
Article in English | MEDLINE | ID: mdl-14613858

ABSTRACT

BACKGROUND: Cellular electrical coupling is essential for normal propagation of the cardiac action potential, whereas reduced electrical coupling is associated with arrhythmias. Known cellular uncoupling agents have severe side effects on membrane ionic currents. We investigated the effect of carbenoxolone on cellular electrical coupling, membrane ionic currents, and atrial and ventricular conduction. METHODS AND RESULTS: In isolated rabbit left ventricular and right atrial myocytes, carbenoxolone (50 micromol/l) had no effect on action potential characteristics. Calcium, potassium, and sodium currents remained unchanged. Dual current clamp experiments on poorly coupled cell pairs revealed a 21+/-3% decrease in coupling conductance by carbenoxolone (mean+/-S.E.M., n=4, p<0.05). High-density activation mapping was performed in intact rabbit atrium and ventricle during Langendorff perfusion of the heart. The amplitude of the Laplacian of the electrograms, a measure of coupling current in intact hearts, decreased from 1.45+/-0.66 to 0.75+/-0.51 microA/mm(3) (mean+/-SD, n=32, p<0.05) after 15 min of carbenoxolone. Carbenoxolone reversibly decreased longitudinal and transversal conduction velocity from 66+/-15 to 49+/-16 cm/s and from 50+/-14 to 35+/-15 cm/s in ventricle, respectively (mean+/-SD, n=5, both p<0.05). In atrium, longitudinal and transversal conduction velocity decreased from 80+/-29 to 60+/-16 cm/s and from 49+/-10 to 38+/-10 cm/s (mean+/-SD, n=8, both p<0.05). CONCLUSIONS: Carbenoxolone-induced uncoupling causes atrial and ventricular conduction slowing without affecting cardiac membrane currents. Activation delay is larger in poorly coupled cells.


Subject(s)
Carbenoxolone/pharmacology , Gap Junctions/drug effects , Heart Conduction System/drug effects , Uncoupling Agents/pharmacology , Action Potentials/drug effects , Animals , Cell Separation/methods , Cells, Cultured , Female , Ion Channels/genetics , Male , Perfusion , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...