Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JHEP Rep ; 6(2): 100962, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304237

ABSTRACT

Innate lymphoid cells (ILCs) have been identified as potent regulators of inflammation, cell death and wound healing, which are the main biological processes involved in the progression of chronic liver disease. Obesity and chronic alcohol consumption are the leading contributors to chronic liver diseases in developed countries, due to inappropriate lifestyles. In particular, inflammation is a key factor in these liver abnormalities and promotes the development of more severe lesions such as fibrosis, cirrhosis and hepatocellular carcinoma. Opposite roles of ILC subsets have been described in the development of chronic liver disease, depending on the stage and aetiology of the disease. The heterogeneous family of ILCs encompasses cytotoxic natural killer cells, the cytokine-producing type 1, 2 and 3 ILCs and lymphoid tissue inducer cells. Dysfunction of these immune cells provokes uncontrolled inflammation and tissue damage, which are the basis for tumour development. In this review, we provide an overview of the recent and putative roles of ILC subsets in obesity and alcohol-associated liver diseases, which are currently the major contributors to end-stage liver complications such as fibrosis/cirrhosis and hepatocellular carcinoma.

2.
Obesity (Silver Spring) ; 31(10): 2568-2582, 2023 10.
Article in English | MEDLINE | ID: mdl-37724058

ABSTRACT

OBJECTIVE: This study investigated the contribution of osteopontin/secreted phosphoprotein 1 (SPP1) to T-cell regulation in initiation of obesity-driven adipose tissue (AT) inflammation and macrophage infiltration and the subsequent impact on insulin resistance (IR) and metabolic-associated fatty liver disease (MAFLD) development. METHODS: SPP1 and T-cell marker expression was evaluated in AT and liver according to type 2 diabetes and MAFLD in human individuals with obesity. The role of SPP1 on T cells was evaluated in Spp1-knockout mice challenged with a high-fat diet. RESULTS: In humans with obesity, elevated SPP1 expression in AT was parallel to T-cell marker expression (CD4, CD8A) and IR. Weight loss reversed AT inflammation with decreased SPP1 and CD8A expression. In liver, elevated SPP1 expression correlated with MAFLD severity and hepatic T-cell markers. In mice, although Spp1 deficiency did not impact obesity, it did improve AT IR associated with prevention of proinflammatory T-cell accumulation at the expense of regulatory T cells. Spp1 deficiency also decreased ex vivo helper T cell, subtype 1 (Th1) polarization of AT CD4+ and CD8+ T cells. In addition, Spp1 deficiency significantly reduced obesity-associated liver steatosis and inflammation. CONCLUSIONS: Current findings highlight a critical role of SPP1 in the initiation of obesity-driven chronic inflammation by regulating accumulation and/or polarization of T cells. Early targeting of SPP1 could be beneficial for IR and MAFLD treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Osteopontin , Animals , Humans , Mice , Adipose Tissue , CD8-Positive T-Lymphocytes , Inflammation , Mice, Knockout , Osteopontin/genetics
3.
Cell Mol Gastroenterol Hepatol ; 13(1): 173-191, 2022.
Article in English | MEDLINE | ID: mdl-34411785

ABSTRACT

BACKGROUND & AIMS: Spleen tyrosine kinase (SYK) signaling pathway regulates critical processes in innate immunity, but its role in parenchymal cells remains elusive in chronic liver diseases. We investigate the relative contribution of SYK and its substrate c-Abl Src homology 3 domain-binding protein-2 (3BP2) in both myeloid cells and hepatocytes in the onset of metabolic steatohepatitis. METHODS: Hepatic SYK-3BP2 pathway was evaluated in mouse models of metabolic-associated fatty liver diseases (MAFLD) and in obese patients with biopsy-proven MAFLD (n = 33). Its role in liver complications was evaluated in Sh3bp2 KO and myeloid-specific Syk KO mice challenged with methionine and choline deficient diet and in homozygous Sh3bp2KI/KI mice with and without SYK expression in myeloid cells. RESULTS: Here we report that hepatic expression of 3BP2 and SYK correlated with metabolic steatohepatitis severity in mice. 3BP2 deficiency and SYK deletion in myeloid cells mediated the same protective effects on liver inflammation, injury, and fibrosis priming upon diet-induced steatohepatitis. In primary hepatocytes, the targeting of 3BP2 or SYK strongly decreased the lipopolysaccharide-mediated inflammatory mediator expression and 3BP2-regulated SYK expression. In homozygous Sh3bp2KI/KI mice, the chronic inflammation mediated by the proteasome-resistant 3BP2 mutant promoted severe hepatitis and liver fibrosis with augmented liver SYK expression. In these mice, the deletion of SYK in myeloid cells was sufficient to prevent these liver lesions. The hepatic expression of SYK is also up-regulated with metabolic steatohepatitis and correlates with liver macrophages in biopsy-proven MAFLD patients. CONCLUSIONS: Collectively, these data suggest an important role for the SYK-3BP2 pathway in the pathogenesis of chronic liver inflammatory diseases and highlight its targeting in hepatocytes and myeloid cells as a potential strategy to treat metabolic steatohepatitis.


Subject(s)
Fatty Liver , Virulence Factors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Humans , Mice , Myeloid Cells/metabolism , Signal Transduction , Syk Kinase/metabolism
4.
Front Immunol ; 11: 1622, 2020.
Article in English | MEDLINE | ID: mdl-32849550

ABSTRACT

Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity.


Subject(s)
B-Cell Activating Factor/biosynthesis , Inhalation Exposure/adverse effects , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia/etiology , Pneumonia/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , B-Cell Activating Factor/genetics , Bronchoalveolar Lavage Fluid/immunology , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Gene Expression , Humans , Inflammation Mediators/metabolism , Male , Mice , Neutrophil Infiltration , Pneumonia/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Tobacco Smoking/adverse effects
5.
Front Endocrinol (Lausanne) ; 11: 597648, 2020.
Article in English | MEDLINE | ID: mdl-33384662

ABSTRACT

Non-Alcoholic Steatohepatitis (NASH) is the progressive form of Non-Alcoholic Fatty Liver Disease (NAFLD), the main cause of chronic liver complications. The development of NASH is the consequence of aberrant activation of hepatic conventional immune, parenchymal, and endothelial cells in response to inflammatory mediators from the liver, adipose tissue, and gut. Hepatocytes, Kupffer cells and liver sinusoidal endothelial cells contribute to the significant accumulation of bone-marrow derived-macrophages and neutrophils in the liver, a hallmark of NASH. The aberrant activation of these immune cells elicits harmful inflammation and liver injury, leading to NASH progression. In this review, we highlight the processes triggering the recruitment and/or activation of hepatic innate immune cells, with a focus on macrophages, neutrophils, and innate lymphoid cells as well as the contribution of hepatocytes and endothelial cells in driving liver inflammation/fibrosis. On-going studies and preliminary results from global and specific therapeutic strategies to manage this NASH-related inflammation will also be discussed.


Subject(s)
Immunity, Innate/immunology , Inflammation Mediators/metabolism , Inflammation/complications , Non-alcoholic Fatty Liver Disease/pathology , Animals , Humans , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy
6.
Sci Rep ; 9(1): 14848, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619733

ABSTRACT

Cigarette smoke exposure is a leading cause of chronic obstructive pulmonary disease (COPD), a major health issue characterized by airway inflammation with fibrosis and emphysema. Here we demonstrate that acute exposure to cigarette smoke causes respiratory barrier damage with the release of self-dsDNA in mice. This triggers the DNA sensor cGAS (cyclic GMP-AMP synthase) and stimulator of interferon genes (STING), driving type I interferon (IFN I) dependent lung inflammation, which are attenuated in cGAS, STING or type I interferon receptor (IFNAR) deficient mice. Therefore, we demonstrate a critical role of self-dsDNA release and of the cGAS-STING-type I interferon pathway upon cigarette smoke-induced damage, which may lead to therapeutic targets in COPD.


Subject(s)
DNA/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Pneumonia/metabolism , Pulmonary Emphysema/metabolism , Receptor, Interferon alpha-beta/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...