Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(7): 8466-8474, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31971768

ABSTRACT

The integration of functional thin film materials with adaptable properties is essential for the development of new paradigms in information technology. Among them, complex oxides with perovskite structures have huge potential based on the particularly vast diversity of physical properties. Here, we demonstrate the possibility of transferring perovskite oxide materials like SrTiO3 onto a silicon substrate using an environmentally friendly process at the nanoscale by means of a water-soluble perovskite sacrificial layer, SrVO3. Based on in situ monitoring atomic force microscopy and photoemission studies, we reveal that the dissolution is initiated from a strontium-rich phase at the extreme surface of SrVO3. The nanothick SrTiO3-transferred layer onto silicon presents appropriate morphology and monocrystalline quality, providing a proof of concept for the integration and development of all-perovskite-oxide electronics or "oxitronics" onto any Si-based substrate.

2.
Sci Rep ; 7(1): 15105, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118401

ABSTRACT

Many efforts have been devoted to wave slowing, as it is essential, for instance, in analog signal computing and is one prerequisite for increased wave/matter interactions. Despite the interest of many communities, researches have mostly been conducted in optics, where wavelength-scaled structured composite media are promising candidates for compact slow light components. Yet their structural scale prevents them from being transposed to lower frequencies. Here, we propose to overcome this limitation using the deep sub-wavelength scale of locally resonant metamaterials. We experimentally show, in the microwave regime, that introducing coupled resonant defects in such metamaterials creates sub-wavelength waveguides in which wave propagation exhibit reduced group velocities. We qualitatively explain the mechanism underlying this slow wave propagation and demonstrate how it can be used to tune the velocity, achieving group indices as high as 227. We conclude by highlighting the three beneficial consequences of our line defect slow wave waveguides: (1) the sub-wavelength scale making it a compact platform for low frequencies (2) the large group indices that together with the extreme field confinement enables efficient wave/matter interactions and (3) the fact that, contrarily to other approaches, slow wave propagation does not occur at the expense of drastic bandwidth reductions.

SELECTION OF CITATIONS
SEARCH DETAIL
...