Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 77(5): 288-293, 2023 May 31.
Article in English | MEDLINE | ID: mdl-38047823

ABSTRACT

This article seeks to provide an overview of the environmental factors within the pharmaceutical industry that have contributed to the emergence of flow chemistry over the past two decades. It highlights some of the challenges facing the industry and describes how they are being overcome by the exponential trajectory of scientific progress in the area. We identify current trends and offer a speculative glimpse into the future of drug development and manufacturing with some examples of progress being made at CARBOGEN AMCIS.

2.
Org Process Res Dev ; 26(4): 1145-1151, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35573033

ABSTRACT

A new continuous-flow process is presented for synthesis of the pharmaceutical intermediate norketamine (5). Our approach has been to take the well-established and industrially applied batch synthetic route to this promising antidepressant precursor and convert it to a telescoped multi-stage continuous-flow platform. This involves the α-bromination of a ketone, an imination/rearrangement sequence with liquid ammonia, and a thermally induced α-iminol rearrangement. Our approach is high yielding and provides several processing advantages including the reduction of many of the hazards conventionally associated with this route, particularly in the handling of liquid bromine, hydrogen bromide gas, and liquid ammonia. Each of these presents serious operational challenges in a batch process at scale.

3.
Dalton Trans ; 51(9): 3590-3603, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35147617

ABSTRACT

Iron dysregulation, dopamine depletion, cellular oxidative stress and α-synuclein protein mis-folding are key neuronal pathological features seen in the progression of Parkinson's disease. Iron chelators endowed with one or more therapeutic modes of action have long been suggested as disease modifying therapies for its treatment. In this study, novel 1-hydroxypyrazin-2(1H)-one iron chelators were synthesized and their physicochemical properties, iron chelation abilities, antioxidant capacities and neuroprotective effects in a cell culture model of Parkinson's disease were evaluated. Physicochemical properties (log ß, log D7.4, pL0.5) suggest that these ligands have a poorer ability to penetrate cell membranes and form weaker iron complexes than the closely related 1-hydroxypyridin-2(1H)-ones. Despite this, we show that levels of neuroprotection provided by these ligands against the catecholaminergic neurotoxin 6-hydroxydopamine in vitro were comparable to those seen previously with the 1-hydroxypyridin-2(1H)-ones and the clinically used iron chelator Deferiprone, with two of the ligands restoring cell viability to ≥89% compared to controls. Two of the ligands were endowed with additional phenol moieties in an attempt to derive multifunctional chelators with dual iron chelation/antioxidant activity. However, levels of neuroprotection with these ligands were no greater than ligands lacking this moiety, suggesting the neuroprotective properties of these ligands are due primarily to chelation and passivation of intracellular labile iron, preventing the generation of free radicals and reactive oxygen species that otherwise lead to the neuronal cell death seen in Parkinson's disease.


Subject(s)
Parkinson Disease
4.
Org Lett ; 17(21): 5436-9, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26509957

ABSTRACT

An efficient preparation of a precursor to the neprilysin inhibitor sacubitril is described. The convergent synthesis features a diastereoselective Reformatsky-type carbethoxyallylation and a rhodium-catalyzed stereoselective hydrogenation for installation of the two key stereocenters. Moreover, by integrating machine-assisted methods with batch processes, this procedure allows a safe and rapid production of the key intermediates which are promptly transformed to the target molecule (3·HCl) over 7 steps in 54% overall yield.


Subject(s)
Aminobutyrates/chemical synthesis , Neprilysin/antagonists & inhibitors , Tetrazoles/chemical synthesis , Aminobutyrates/chemistry , Aminobutyrates/pharmacology , Biphenyl Compounds , Catalysis , Drug Combinations , Hydrogenation , Molecular Structure , Rhodium/chemistry , Stereoisomerism , Tetrazoles/chemistry , Tetrazoles/pharmacology , Valsartan
SELECTION OF CITATIONS
SEARCH DETAIL
...