Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Bioinformatics ; 40(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38449289

ABSTRACT

MOTIVATION: Human epigenomic data has been generated by large consortia for thousands of cell types to be used as a reference map of normal and disease chromatin states. Since epigenetic data contains potentially identifiable information, similarly to genetic data, most raw files generated by these consortia are stored in controlled-access databases. It is important to protect identifiable information, but this should not hinder secure sharing of these valuable datasets. RESULTS: Guided by the Framework for responsible sharing of genomic and health-related data from the Global Alliance for Genomics and Health (GA4GH), we have developed an approach and a tool to facilitate the exploration of epigenomics datasets' aggregate results, while filtering out identifiable information. Specifically, the EpiVar Browser allows a user to navigate an epigenetic dataset from a cohort of individuals and enables direct exploration of genotype-chromatin phenotype relationships. Because individual genotypes and epigenetic signal tracks are not directly accessible, and rather aggregated in the portal output, no identifiable data is released, yet the interface allows for dynamic genotype-epigenome interrogation. This approach has the potential to accelerate analyses that would otherwise require a lengthy multi-step approval process and provides a generalizable strategy to facilitate responsible access to sensitive epigenomics data. AVAILABILITY AND IMPLEMENTATION: Online portal: https://computationalgenomics.ca/tools/epivar; EpiVar Browser source code: https://github.com/c3g/epivar-browser; bw-merge-window tool source code: https://github.com/c3g/bw-merge-window.


Subject(s)
Epigenomics , Software , Humans , Epigenomics/methods , Genome , Genomics , Chromatin/genetics
2.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517886

ABSTRACT

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Subject(s)
Breast Neoplasms , Gene Regulatory Networks , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Animals , Mice , Chromosomes, Human, Pair 4/genetics , Cell Proliferation/genetics , Chromosome Aberrations , Cell Line, Tumor , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338754

ABSTRACT

Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.


Subject(s)
MicroRNAs , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , RNA, Circular , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Circular/genetics
4.
NPJ Genom Med ; 9(1): 8, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326393

ABSTRACT

Whole genome sequencing (WGS) at high-depth (30X) allows the accurate discovery of variants in the coding and non-coding DNA regions and helps elucidate the genetic underpinnings of human health and diseases. Yet, due to the prohibitive cost of high-depth WGS, most large-scale genetic association studies use genotyping arrays or high-depth whole exome sequencing (WES). Here we propose a cost-effective method which we call "Whole Exome Genome Sequencing" (WEGS), that combines low-depth WGS and high-depth WES with up to 8 samples pooled and sequenced simultaneously (multiplexed). We experimentally assess the performance of WEGS with four different depth of coverage and sample multiplexing configurations. We show that the optimal WEGS configurations are 1.7-2.0 times cheaper than standard WES (no-plexing), 1.8-2.1 times cheaper than high-depth WGS, reach similar recall and precision rates in detecting coding variants as WES, and capture more population-specific variants in the rest of the genome that are difficult to recover when using genotype imputation methods. We apply WEGS to 862 patients with peripheral artery disease and show that it directly assesses more known disease-associated variants than a typical genotyping array and thousands of non-imputable variants per disease-associated locus.

5.
Nat Genet ; 56(3): 408-419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424460

ABSTRACT

Humans display remarkable interindividual variation in their immune response to identical challenges. Yet, our understanding of the genetic and epigenetic factors contributing to such variation remains limited. Here we performed in-depth genetic, epigenetic and transcriptional profiling on primary macrophages derived from individuals of European and African ancestry before and after infection with influenza A virus. We show that baseline epigenetic profiles are strongly predictive of the transcriptional response to influenza A virus across individuals. Quantitative trait locus (QTL) mapping revealed highly coordinated genetic effects on gene regulation, with many cis-acting genetic variants impacting concomitantly gene expression and multiple epigenetic marks. These data reveal that ancestry-associated differences in the epigenetic landscape can be genetically controlled, even more than gene expression. Lastly, among QTL variants that colocalized with immune-disease loci, only 7% were gene expression QTL, while the remaining genetic variants impact epigenetic marks, stressing the importance of considering molecular phenotypes beyond gene expression in disease-focused studies.


Subject(s)
Influenza, Human , Humans , Influenza, Human/genetics , Individuality , Quantitative Trait Loci/genetics , Chromosome Mapping , Epigenesis, Genetic
6.
Nat Commun ; 15(1): 657, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253606

ABSTRACT

Rare DNA alterations that cause heritable diseases are only partially resolvable by clinical next-generation sequencing due to the difficulty of detecting structural variation (SV) in all genomic contexts. Long-read, high fidelity genome sequencing (HiFi-GS) detects SVs with increased sensitivity and enables assembling personal and graph genomes. We leverage standard reference genomes, public assemblies (n = 94) and a large collection of HiFi-GS data from a rare disease program (Genomic Answers for Kids, GA4K, n = 574 assemblies) to build a graph genome representing a unified SV callset in GA4K, identify common variation and prioritize SVs that are more likely to cause genetic disease (MAF < 0.01). Using graphs, we obtain a higher level of reproducibility than the standard reference approach. We observe over 200,000 SV alleles unique to GA4K, including nearly 1000 rare variants that impact coding sequence. With improved specificity for rare SVs, we isolate 30 candidate SVs in phenotypically prioritized genes, including known disease SVs. We isolate a novel diagnostic SV in KMT2E, demonstrating use of personal assemblies coupled with pangenome graphs for rare disease genomics. The community may interrogate our pangenome with additional assemblies to discover new SVs within the allele frequency spectrum relevant to genetic diseases.


Subject(s)
Genomics , Rare Diseases , Humans , Rare Diseases/genetics , Reproducibility of Results , Chromosome Mapping , Alleles
7.
iScience ; 26(8): 107394, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37599818

ABSTRACT

Here, we exploit a deep serological profiling strategy coupled with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune responses. Applying a high-density peptide array (HDPA) spanning the entire proteomes of SARS-CoV-2 and endemic human coronaviruses allowed identification of B cell epitopes and relate them to their evolutionary and structural properties. We identify hotspots of pre-existing immunity and identify cross-reactive epitopes that contribute to increasing the overall humoral immune response to SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the differences across proteins, waves, and SARS-CoV-2 variants. Lastly, we show that mutations in spike and nucleocapsid epitopes are under stronger selection between than within patients, suggesting that most of the selective pressure for immune evasion occurs upon transmission between hosts.

8.
Front Genet ; 14: 1237092, 2023.
Article in English | MEDLINE | ID: mdl-37576549

ABSTRACT

Transcription-factor binding to cis-regulatory regions regulates the gene expression program of a cell, but occupancy is often a poor predictor of the gene response. Here, we show that glucocorticoid stimulation led to the reorganization of transcriptional coregulators MED1 and BRD4 within topologically associating domains (TADs), resulting in active or repressive gene environments. Indeed, we observed a bias toward the activation or repression of a TAD when their activities were defined by the number of regions gaining and losing MED1 and BRD4 following dexamethasone (Dex) stimulation. Variations in Dex-responsive genes at the RNA levels were consistent with the redistribution of MED1 and BRD4 at the associated cis-regulatory regions. Interestingly, Dex-responsive genes without the differential recruitment of MED1 and BRD4 or binding by the glucocorticoid receptor were found within TADs, which gained or lost MED1 and BRD4, suggesting a role of the surrounding environment in gene regulation. However, the amplitude of the response of Dex-regulated genes was higher when the differential recruitment of the glucocorticoid receptor and transcriptional coregulators was observed, reaffirming the role of transcription factor-driven gene regulation and attributing a lesser role to the TAD environment. These results support a model where a signal-induced transcription factor induces a regionalized effect throughout the TAD, redefining the notion of direct and indirect effects of transcription factors on target genes.

9.
bioRxiv ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37577719

ABSTRACT

Motivation: Human epigenomic data has been generated by large consortia for thousands of cell types to be used as a reference map of normal and disease chromatin states. Since epigenetic data contains potentially identifiable information, similarly to genetic data, most raw files generated by these consortia are stored in controlled-access databases. It is important to protect identifiable information, but this should not hinder secure sharing of these valuable datasets. Results: Guided by the Framework for responsible sharing of genomic and health-related data from the Global Alliance for Genomics and Health (GA4GH), we have developed a tool to facilitate the exploration of epigenomics datasets' aggregate results, while filtering out identifiable information. Specifically, the EpiVar Browser allows a user to navigate an epigenetic dataset from a cohort of individuals and enables direct exploration of genotype-chromatin phenotype relationships. Because the information about individual genotypes is not accessible and aggregated in the output that is made available, no identifiable data is released, yet the interface allows for dynamic genotype - epigenome interrogation. This approach has the potential to accelerate analyses that would otherwise require a lengthy multi-step approval process and provides a generalisable strategy to facilitate responsible access to sensitive epigenomics data. Availability and implementation: Online portal instance: https://computationalgenomics.ca/tools/epivarSource code: https://github.com/c3g/epivar-browser.

10.
Nucleic Acids Res ; 51(14): 7314-7329, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37395395

ABSTRACT

ZMYM2 is a transcriptional repressor whose role in development is largely unexplored. We found that Zmym2-/- mice show embryonic lethality by E10.5. Molecular characterization of Zmym2-/- embryos revealed two distinct defects. First, they fail to undergo DNA methylation and silencing of germline gene promoters, resulting in widespread upregulation of germline genes. Second, they fail to methylate and silence the evolutionarily youngest and most active LINE element subclasses in mice. Zmym2-/- embryos show ubiquitous overexpression of LINE-1 protein as well as aberrant expression of transposon-gene fusion transcripts. ZMYM2 homes to sites of PRC1.6 and TRIM28 complex binding, mediating repression of germline genes and transposons respectively. In the absence of ZMYM2, hypermethylation of histone 3 lysine 4 occurs at target sites, creating a chromatin landscape unfavourable for establishment of DNA methylation. ZMYM2-/- human embryonic stem cells also show aberrant upregulation and demethylation of young LINE elements, indicating a conserved role in repression of active transposons. ZMYM2 is thus an important new factor in DNA methylation patterning in early embryonic development.


Subject(s)
DNA Methylation , Animals , Humans , Mice , Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Embryonic Development/genetics , Germ Cells/metabolism , Histones/genetics , Histones/metabolism , Transcription Factors/metabolism
11.
Cell Genom ; 3(5): 100294, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37228750

ABSTRACT

Genetic variants, including mobile element insertions (MEIs), are known to impact the epigenome. We hypothesized that genome graphs, which encapsulate genetic diversity, could reveal missing epigenomic signals. To test this, we sequenced the epigenome of monocyte-derived macrophages from 35 ancestrally diverse individuals before and after influenza infection, allowing us to investigate the role of MEIs in immunity. We characterized genetic variants and MEIs using linked reads and built a genome graph. Mapping epigenetic data revealed 2.3%-3% novel peaks for H3K4me1, H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq), and ATAC-seq. Additionally, the use of a genome graph modified some quantitative trait loci estimates and revealed 375 polymorphic MEIs in an active epigenomic state. Among these is an AluYh3 polymorphism whose chromatin state changed after infection and was associated with the expression of TRIM25, a gene that restricts influenza RNA synthesis. Our results demonstrate that graph genomes can reveal regulatory regions that would have been overlooked by other approaches.

12.
Cell Genom ; 3(5): 100292, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37228757

ABSTRACT

Influenza A virus (IAV) infections are frequent every year and result in a range of disease severity. Here, we wanted to explore the potential contribution of transposable elements (TEs) to the variable human immune response. Transcriptome profiling in monocyte-derived macrophages from 39 individuals following IAV infection revealed significant inter-individual variation in viral load post-infection. Using transposase-accessible chromatin using sequencing (ATAC-seq), we identified a set of TE families with either enhanced or reduced accessibility upon infection. Of the enhanced families, 15 showed high variability between individuals and had distinct epigenetic profiles. Motif analysis showed an association with known immune regulators (e.g., BATFs, FOSs/JUNs, IRFs, STATs, NFkBs, NFYs, and RELs) in stably enriched families and with other factors in variable families, including KRAB-ZNFs. We showed that TEs and host factors regulating TEs were predictive of viral load post-infection. Our findings shed light on the role TEs and KRAB-ZNFs may play in inter-individual variation in immunity.

13.
Clin Epigenetics ; 15(1): 82, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37170172

ABSTRACT

BACKGROUND: Children conceived through assisted reproduction are at an increased risk for growth and genomic imprinting disorders, often linked to DNA methylation defects. It has been suggested that assisted reproductive technology (ART) and underlying parental infertility can induce epigenetic instability, specifically interfering with DNA methylation reprogramming events during germ cell and preimplantation development. To date, human studies exploring the association between ART and DNA methylation defects have reported inconsistent or inconclusive results, likely due to population heterogeneity and the use of technologies with limited coverage of the epigenome. In our study, we explored the epigenetic risk of ART by comprehensively profiling the DNA methylome of 73 human cord blood samples of singleton pregnancies (n = 36 control group, n = 37 ART/hypofertile group) from a human prospective longitudinal birth cohort, the 3D (Design, Develop, Discover) Study, using a high-resolution sequencing-based custom capture panel that examines over 2.4 million autosomal CpGs in the genome. RESULTS: We identified evidence of sex-specific effects of ART/hypofertility on cord blood DNA methylation patterns. Our genome-wide analyses identified ~ 46% more CpGs affected by ART/hypofertility in female than in male infant cord blood. We performed a detailed analysis of three imprinted genes which have been associated with altered DNA methylation following ART (KCNQ1OT1, H19/IGF2 and GNAS) and found that female infant cord blood was associated with DNA hypomethylation. When compared to less invasive procedures such as intrauterine insemination, more invasive ARTs (in vitro fertilization, intracytoplasmic sperm injection, embryo culture) resulted in more marked and distinct effects on the cord blood DNA methylome. In the in vitro group, we found a close to fourfold higher proportion of significantly enriched Gene Ontology terms involved in development than in the in vivo group. CONCLUSIONS: Our study highlights the ability of a sensitive, targeted, sequencing-based approach to uncover DNA methylation perturbations in cord blood associated with hypofertility and ART and influenced by offspring sex and ART technique invasiveness.


Subject(s)
DNA Methylation , Epigenome , Pregnancy , Child , Male , Humans , Female , Prospective Studies , Genome-Wide Association Study , Fetal Blood/metabolism , Semen , Reproductive Techniques, Assisted/adverse effects , Genomic Imprinting
15.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36897015

ABSTRACT

SUMMARY: Large-scale sharing of genomic quantification data requires standardized access interfaces. In this Global Alliance for Genomics and Health project, we developed RNAget, an API for secure access to genomic quantification data in matrix form. RNAget provides for slicing matrices to extract desired subsets of data and is applicable to all expression matrix-format data, including RNA sequencing and microarrays. Further, it generalizes to quantification matrices of other sequence-based genomics such as ATAC-seq and ChIP-seq. AVAILABILITY AND IMPLEMENTATION: https://ga4gh-rnaseq.github.io/schema/docs/index.html.


Subject(s)
RNA , Software , Genomics , Genome , Sequence Analysis, RNA
16.
Clin Cancer Res ; 29(7): 1220-1231, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36815791

ABSTRACT

PURPOSE: Patients with resected localized clear-cell renal cell carcinoma (ccRCC) remain at variable risk of recurrence. Incorporation of biomarkers may refine risk prediction and inform adjuvant treatment decisions. We explored the role of tumor genomics in this setting, leveraging the largest cohort to date of localized ccRCC tissues subjected to targeted gene sequencing. EXPERIMENTAL DESIGN: The somatic mutation status of 12 genes was determined in 943 ccRCC cases from a multinational cohort of patients, and associations to outcomes were examined in a Discovery (n = 469) and Validation (n = 474) framework. RESULTS: Tumors containing a von-Hippel Lindau (VHL) mutation alone were associated with significantly improved outcomes in comparison with tumors containing a VHL plus additional mutations. Within the Discovery cohort, those with VHL+0, VHL+1, VHL+2, and VHL+≥3 tumors had disease-free survival (DFS) rates of 90.8%, 80.1%, 68.2%, and 50.7% respectively, at 5 years. This trend was replicated in the Validation cohort. Notably, these genomically defined groups were independent of tumor mutational burden. Amongst patients eligible for adjuvant therapy, those with a VHL+0 tumor (29%) had a 5-year DFS rate of 79.3% and could, therefore, potentially be spared further treatment. Conversely, patients with VHL+2 and VHL+≥3 tumors (32%) had equivalent DFS rates of 45.6% and 35.3%, respectively, and should be prioritized for adjuvant therapy. CONCLUSIONS: Genomic characterization of ccRCC identified biologically distinct groups of patients with divergent relapse rates. These groups account for the ∼80% of cases with VHL mutations and could be used to personalize adjuvant treatment discussions with patients as well as inform future adjuvant trial design.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney Neoplasms/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Neoplasm Recurrence, Local/genetics , Mutation
17.
Methods Mol Biol ; 2607: 63-83, 2023.
Article in English | MEDLINE | ID: mdl-36449158

ABSTRACT

Transposable element (TE) insertions are a major source of structural variation in the human genome. Due to the repetitive nature and biological importance of TEs, many bioinformatic tools have been developed to identify and genotype TE insertion polymorphisms using high-throughput short-reads. In this chapter, we outline recently developed methods to characterize TE insertion polymorphisms in human populations. We also provide detailed protocols to tackle this question primarily using three software: MELT2, ERVcaller, and TypeREF.


Subject(s)
Computational Biology , DNA Transposable Elements , Humans , DNA Transposable Elements/genetics , Genotype , Genome, Human , Polymorphism, Genetic
18.
Methods Mol Biol ; 2607: 85-94, 2023.
Article in English | MEDLINE | ID: mdl-36449159

ABSTRACT

Pangenome graphs are flexible data structures that contain the genetic variation that exists in a population of genomes and describe the sequences of the many possible ensuing haplotypes. Here, we use such a pangenome graph to represent and genotype transposable element (TE) polymorphisms. By combining the transposable element annotation (Alus, L1s, and SVAs) of the human genome reference with novel transposable element insertions observed in two high-quality assemblies (HG002 and HG00733), we show how to create a transposable element pangenome that consists of ~1.2 million reference and 2939 non-reference transposable elements. We then demonstrate this approach by aligning short-read sequencing data and genotyping transposable element deletions and insertions with reasonable specificity and sensitivity (0.85 F1-score).


Subject(s)
DNA Transposable Elements , Polymorphism, Genetic , Humans , DNA Transposable Elements/genetics , Genotype , Haplotypes , Genome, Human
19.
Mamm Genome ; 34(1): 44-55, 2023 03.
Article in English | MEDLINE | ID: mdl-36454369

ABSTRACT

Several lines of evidence suggest that the presence of the Y chromosome influences DNA methylation of autosomal loci. To better understand the impact of the Y chromosome on autosomal DNA methylation patterns and its contribution to sex bias in methylation, we identified Y chromosome dependent differentially methylated regions (yDMRs) using whole-genome bisulfite sequencing methylation data from livers of mice with different combinations of sex-chromosome complement and gonadal sex. Nearly 90% of the autosomal yDMRs mapped to transposable elements (TEs) and most of them had lower methylation in XY compared to XX or XO mice. Follow-up analyses of four reporter autosomal yDMRs showed that Y-dependent methylation levels were consistent across most somatic tissues but varied in strains with different origins of the Y chromosome, suggesting that genetic variation in the Y chromosome influenced methylation levels of autosomal regions. Mice lacking the q-arm of the Y chromosome (B6.NPYq-2) as well as mice with a loss-of-function mutation in Kdm5d showed no differences in methylation levels compared to wild type mice. In conclusion, the Y-linked modifier of TE methylation is likely to reside on the short arm of Y chromosome and further studies are required to identify this gene.


Subject(s)
DNA Methylation , Sexism , Mice , Animals , Y Chromosome , Genetic Variation
20.
J Assoc Med Microbiol Infect Dis Can ; 7(2): 131-134, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36337358

ABSTRACT

BACKGROUND: Few reports exist on the characteristics and outcomes of persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised hosts. METHODS: A 49-year-old patient with granulomatosis with polyangiitis (GPA) and a renal transplant experienced multiple hospitalizations for coronavirus disease 2019 (COVID-19) pneumonia and relapses between October 2020 and February 2021. Careful chart review of medical history, hospitalizations, and microbiological testing including SARS-CoV-2 cycle threshold values, therapies, and imaging was undertaken. SARS-CoV-2 genome sequencing was performed in five viral samples to distinguish persistent infection from re-infection with a different strain. RESULTS: Sequencing confirmed that all samples tested were from the same viral lineage, indicating a long-term, persistent infection rather than re-infection with a new strain. The patient ultimately stabilized after two courses of remdesivir plus dexamethasone, replacement intravenous immunoglobulin, and bamlanivimab. Rituximab maintenance therapy for vasculitis remains on hold. CONCLUSIONS: SARS-CoV-2 may persist for several months in immunocompromised hosts and may go unrecognized as an ongoing active infection. More studies are needed to determine how to optimize COVID-19 treatment in this vulnerable population.


HISTORIQUE: Il existe peu de rapports sur les caractéristiques et les issues de l'infection par le coronavirus 2 du syndrome respiratoire aigu sévère (SRAS-CoV-2) chez les hôtes immunodéprimés. MÉTHODOLOGIE: UNE PATIENTE de 49 ans receveuse d'une transplantation rénale atteinte d'une granulomatose avec polyangéite a été hospitalisée à de multiples reprises à cause d'une pneumonie à maladie à coronavirus 2019 (COVID-19) et de récidives entre octobre 2020 et février 2021. Les chercheurs ont exécuté une analyse attentive du dossier pour connaître l'histoire médicale de la patiente, les hospitalisations et les tests microbiologiques effectués, y compris les valeurs seuils du cycle du SRAS-CoV-2, les traitements et les techniques d'imagerie. Ils ont procédé au séquençage du génome du SRAS-CoV-2 dans cinq prélèvements viraux pour distinguer l'infection persistante de la réinfection par une souche différente. RÉSULTATS : Le séquençage a confirmé que tous les prélèvements effectués provenaient de la même lignée virale, ce qui détermine une infection persistante prolongée plutôt qu'une réinfection par une nouvelle souche. L'état de la patiente a fini par se stabiliser après deux traitements au remdésivir combiné à de la dexaméthasone, une thérapie de substitution par immunoglobuline intraveineuse et du bamlanivimab. Un traitement d'entretien de la vasculite au rituximab demeure en suspens. CONCLUSIONS: Le SRAS-CoV-2 peut persister plusieurs mois chez les hôtes immunodéprimés, et un état d'infection active continue peut passer inaperçu. Plus d'études devront être réalisées pour déterminer le moyen d'optimiser le traitement de la COVID-19 dans cette population vulnérable.

SELECTION OF CITATIONS
SEARCH DETAIL
...