Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Microbiota Food Health ; 41(4): 195-199, 2022.
Article in English | MEDLINE | ID: mdl-36258766

ABSTRACT

Dysbiosis of gut microbiota has adverse effects on host health. This study aimed to determine the effects of changes of faecal microbiota in obese and diabetic rats on the imputed production of enzymes involved in the metabolism of glutamate, gamma-aminobutyric acid (GABA), and succinate. The levels of glutamate decarboxylase, GABA transaminase, succinate-semialdehyde dehydrogenase, and methylisocitrate lyase were reduced or absent in diabetic rats compared with controls and obese rats. Glutamate decarboxylase (GAD) was significantly reduced in obese rats compared with control rats, while the other enzymes were unaltered; different bacterial taxa are suggested to be involved. Levels of bacterial enzymes were inversely correlated with the blood glucose level. These findings suggest that the absence of GABA and reduced succinate metabolism from gut microbiota contribute to the diabetic state in rats.

2.
Biosci Microbiota Food Health ; 40(1): 65-74, 2021.
Article in English | MEDLINE | ID: mdl-33520571

ABSTRACT

Various studies have suggested that the gut microbiome interacts with the host and may have a significant role in the aetiology of obesity and Type 2 Diabetes (T2D). It was hypothesised that bacterial communities in obesity and T2D differ from control and compromise normal interactions between host and microbiota. Obesity and T2D were developed in rats by feeding a high-fat diet or a high-fat diet plus a single low-dose streptozotocin administration, respectively. The microbiome profiles and their metabolic potentials were established by metagenomic 16S rRNA sequencing and bioinformatics. Taxonomy and predicted metabolism-related genes in obesity and T2D were markedly different from controls and indeed from each other. Diversity was reduced in T2D but not in Obese rats. Factors likely to compromise host intestinal, barrier integrity were found in Obese and T2D rats including predicted, decreased bacterial butyrate production. Capacity to increase energy extraction via ABC-transporters and carbohydrate metabolism were enhanced in Obese and T2D rats. T2D was characterized by increased proinflammatory molecules. While obesity and T2D show distinct differences, results suggest that in both conditions Bacteroides and Blautia species were increased indicating a possible mechanistic link.

SELECTION OF CITATIONS
SEARCH DETAIL
...