Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rep ; 66(3): 363-72, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24905510

ABSTRACT

BACKGROUND: ATP is one of the principal sympathetic neurotransmitters which contracts vascular smooth muscle cells (SMCs) via activation of ionotropic P2X receptors (P2XRs). We have recently demonstrated that contraction of the guinea pig small mesenteric arteries evoked by stimulation of P2XRs is sensitive to inhibitors of IP3 receptors (IP3Rs). Here we analyzed contribution of IP3Rs and ryanodine receptors (RyRs) to [Ca(2+)]i transients induced by P2XR agonist αß-meATP (10 µM) in single SMCs from these vessels. METHODS: The effects of inhibition of L-type Ca(2+) channels (VGCCs), RyRs and IP3Rs (5 µM nicardipine, 100 µM tetracaine and 30 µM 2-APB, respectively) on αß-meATP-induced [Ca(2+)]i transients were analyzed using fast x-y confocal Ca(2+) imaging. RESULTS: The effect of IP3R inhibition on the [Ca(2+)]i transient was significantly stronger (67 ± 7%) than that of RyR inhibition (40 ± 5%) and was attenuated by block of VGCCs. The latter indicates that activation of VGCCs is linked to IP3R-mediated Ca(2+) release. Immunostaining of RyRs and IP3Rs revealed that RyRs are located mainly in deeper sarcoplasmic reticulum (SR) while sub-plasma membrane (PM) SR elements are enriched with type 1 IP3Rs. This structural peculiarity makes IP3Rs more accessible to Ca(2+) entering the cell via VGCCs. Thus, IP3Rs may serve as an "intermediate amplifier" between voltage-gated Ca(2+) entry and RyR-mediated Ca(2+) release. CONCLUSIONS: P2X receptor activation in mesenteric artery SMCs recruits IP3Rs-mediated Ca(2+) release from sub-PM SR, which is facilitated by activation of VGCCs. Sensitivity of IP3R-mediated release to VGCC antagonists in vascular SMCs makes this mechanism of special therapeutic significance.


Subject(s)
Calcium/metabolism , Mesenteric Arteries/metabolism , Receptors, Purinergic P2X/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Calcium Channels, L-Type/metabolism , Cell Membrane/metabolism , Guinea Pigs , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Muscle Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Ryanodine Receptor Calcium Release Channel
2.
Pharmacol Rep ; 65(1): 152-63, 2013.
Article in English | MEDLINE | ID: mdl-23563033

ABSTRACT

BACKGROUND: There is growing evidence suggesting involvement of L-type voltage-gated Ca2+ channels (VGCCs) in purinergic signaling mechanisms. However, detailed interplay between VGCCs and P2X receptors in intracellular Ca2+ mobilization is not well understood. This study examined relative contribution of the Ca2+ entry mechanisms and induced by this entry Ca2+ release from the intracellular stores engaged by activation of P2X receptors in smooth muscle cells (SMCs) from the guinea-pig small mesenteric arteries. METHODS: P2X receptors were stimulated by the brief local application of αß-meATP and changes in [Ca2+]i were monitored in fluo-3 loaded SMCs using fast x-y confocal Ca2+ imaging. The effects of the block of L-type VGCCs and/or depletion of the intracellular Ca2+ stores on αß-meATP-induced [Ca2+]i transients were analyzed. RESULTS: Our analysis revealed that Ca2+ entry via L-type VGCCs is augmented by the Ca2+-induced Ca2+ release significantly more than Ca2+ entry via P2X receptors, even though net Ca2+ influxes provided by the two mechanisms are not significantly different. CONCLUSIONS: Thus, arterial SMCs upon P2X receptor activation employ an effective mechanism of the Ca2+ signal amplification, the major component of which is the Ca2+ release from the SR activated by Ca2+ influx via L-type VGCCs. This signaling pathway is engaged by depolarization of the myocyte membrane resulting from activation of P2X receptors, which, being Ca2+ permeable, per se form less effective Ca2+ signaling pathway. This study, therefore, rescales potential targets for therapeutic intervention in purinergic control of vascular tone.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Mesenteric Arteries/metabolism , Receptors, Purinergic P2X/metabolism , Adenosine Triphosphate/administration & dosage , Adenosine Triphosphate/analogs & derivatives , Animals , Calcium Signaling , Guinea Pigs , Male , Microscopy, Confocal , Myocytes, Smooth Muscle/metabolism
3.
J Cereb Blood Flow Metab ; 27(10): 1692-701, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17392694

ABSTRACT

Cerebral vasospasm is a major cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (SAH). It is a sustained constriction of the cerebral arteries that can be reduced by endothelin (ET) receptor antagonists. Voltage-gated Ca(2+) channel antagonists such as nimodipine are relatively less effective. Endothelin-1 is not increased enough after SAH to directly cause the constriction, so we sought alternate mechanisms by which ET-1 might mediate vasospasm. Vasospasm was created in dogs, and the smooth muscle cells were studied molecularly, electrophysiologically, and by isometric tension. During vasospasm, ET-1, 10 nmol/L, induced a nonselective cation current carried by Ca(2+) in 64% of cells compared with in only 7% of control cells. Nimodipine and 2-aminoethoxydiphenylborate (a specific antagonist of store-operated channels) had no effect, whereas SKF96365 (a nonspecific antagonist of nonselective cation channels) decreased this current in vasospastic smooth muscle cells. Transient receptor potential (TRP) proteins may mediate entry of Ca(2+) through nonselective cationic pathways. We tested their role by incubating smooth muscle cells with anti-TRPC1 or TRPC4, both of which blocked ET-1-induced currents in SAH cells. Anti-TRPC5 had no effect. Anti-TRPC1 also inhibited ET-1 contraction of SAH arteries in vitro. Quantitative polymerase chain reaction and Western blotting of seven TRPC isoforms found increased expression of TRPC4 and a novel splice variant of TRPC1 and increased protein expression of TRPC4 and TRPC1. Taken together, the results support a novel mechanism whereby ET-1 significantly increases Ca(2+) influx mediated by TRPC1 and TRPC4 or their heteromers in smooth muscle cells, which promotes development of vasospasm after SAH.


Subject(s)
Endothelin-1/pharmacology , Subarachnoid Hemorrhage/pathology , Vasospasm, Intracranial/pathology , Amino Acid Sequence , Angiography , Animals , Base Sequence , Disease Models, Animal , Dogs , Electrophysiology , Gene Expression Regulation , Molecular Sequence Data , Muscle, Smooth/drug effects , Patch-Clamp Techniques , RNA, Messenger/genetics , Sensitivity and Specificity , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/metabolism , TRPC Cation Channels/chemistry , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Vasospasm, Intracranial/chemically induced , Vasospasm, Intracranial/genetics , Vasospasm, Intracranial/metabolism
4.
J Physiol ; 580(Pt. 2): 523-41, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17185332

ABSTRACT

Electrophysiological and molecular characteristics of voltage-dependent calcium (Ca(2+)) channels were studied using whole-cell patch clamp, polymerase chain reaction and Western blotting in smooth muscle cells freshly isolated from dog basilar artery. Inward currents evoked by depolarizing steps from a holding potential of -50 or -90 mV in 10 mm barium consisted of low- (LVA) and high-voltage activated (HVA) components. LVA current comprised more than half of total current in 24 (12%) of 203 cells and less than 10% of total current in 52 (26%) cells. The remaining cells (127 cells, 62%) had LVA currents between one tenth and one half of total current. LVA current was rapidly inactivating, slowly deactivating, inhibited by high doses of nimodipine and mibefradil (> 0.3 microM), not affected by omega-agatoxin GVIA (gamma100 nM), omega-conotoxin IVA (1 microM) or SNX-482 (200 nM) and probably carried by T-type Ca(2+) channels based on the presence of messenger ribonucleic acid (mRNA) and protein for Ca(v3.1) and Ca(v3.3) alpha(1) subunits of these channels. LVA currents exhibited window current with a maximum of 13% of the LVA current at -37.4 mV. HVA current was slowly inactivating and rapidly deactivating. It was inhibited by nimodipine (IC(50) = 0.018 microM), mibefradil (IC(50) = 0.39 microM) and omega-conotoxin IV (1 microM). Smooth muscle cells also contained mRNA and protein for L- (Ca(v1.2) and Ca(v1.3)), N- (Ca(v2.2)) and T-type (Ca(v3.1) and Ca(v3.3)) alpha(1) Ca(2+) channel subunits. Confocal microscopy showed Ca(v1.2) and Ca(v1.3) (L-type), Ca(v2.2) (N-type) and Ca(v3.1) and Ca(v3.3) (T-type) protein in smooth muscle cells. Relaxation of intact arteries under isometric tension in vitro to nimodipine (1 microM) and mibefradil (1 microM) but not to omega-agatoxin GVIA (100 nM), omega-conotoxin IVA (1 microM) or SNX-482 (1 microM) confirmed the functional significance of L- and T-type voltage-dependent Ca(2+) channel subtypes but not N-type. These results show that dog basilar artery smooth muscle cells express functional voltage-dependent Ca(2+) channels of multiple types.


Subject(s)
Basilar Artery/metabolism , Calcium Channels/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Barium/metabolism , Calcium/metabolism , Dogs , Immunohistochemistry , In Vitro Techniques , Patch-Clamp Techniques , Time Factors
5.
J Physiol ; 553(Pt 3): 1019-31, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-14555716

ABSTRACT

Decreases in the activity of 5-HT-containing caudal raphe neurones during sleep are thought to be partially responsible for the resultant disfacilitation of hypoglossal motoneurones. Whilst 5-HT has a direct excitatory action on hypoglossal motoneurones as a result of activation of 5-HT2 receptors, microinjection of 5-HT2 antagonists into the hypoglossal nucleus reduces motor activity to a much lesser extent compared to the suppression observed during sleep suggesting other transmitters co-localised in caudal raphe neurones may also be involved. The aim of the present study was therefore to characterise raphe pallidus inputs to hypoglossal motoneurones. Whole cell recordings were made from hypoglossal motoneurones in vitro. 5-HT evoked a direct membrane depolarisation (8.45 +/- 3.8 mV, P < 0.001) and increase in cell input resistance (53 +/- 40 %, P < 0.001) which was blocked by the 5-HT2 antagonist, ritanserin (2.40 +/- 2.7 vs. 7.04 +/- 4.6 mV). Stimulation within the raphe pallidus evoked a monosynaptic EPSC that was significantly reduced by the AMPA/kainate antagonist, NBQX (22.8 +/- 16 % of control, P < 0.001). In contrast, the 5-HT2 antagonist, ritanserin, had no effect on the amplitude of these EPSCs (106 +/- 31 % of control, P = n.s.). 5-HT reduced these EPSCs to 50.0 +/- 13 % of control (P < 0.001), as did the 5-HT1A agonist, 8-OH-DPAT (52.5 +/- 17 %, P < 0.001) and the 5-HT1B agonist, CP 93129 (40.6 +/- 29 %, P < 0.01). 8-OH-DPAT and CP 93129 increased the paired pulse ratio (1.38 +/- 0.27 to 1.91 +/- 0.54, P < 0.05 & 1.27 +/- 0.08 to 1.44 +/- 0.13, P < 0.01 respectively) but had no effect on the postsynaptic glutamate response (99 +/- 4.4 % and 100 +/- 2.5 %, P = n.s.). They also increased the frequency (P < 0.001), but not the amplitude, of miniature glutamatergic EPSCs in hypoglossal motoneurones. These data demonstrate that raphe pallidus inputs to hypoglossal motoneurones are predominantly glutamatergic in nature, with 5-HT decreasing the release of glutamate from these projections as a result of activation of 5-HT1A and/or 5-HT1B receptors located on presynaptic terminals.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Globus Pallidus/physiology , Hypoglossal Nerve/physiology , Motor Neurons/physiology , Raphe Nuclei/physiology , Serotonin Antagonists/pharmacology , Serotonin/pharmacology , Animals , Electrophysiology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Globus Pallidus/drug effects , Hypoglossal Nerve/drug effects , In Vitro Techniques , Kinetics , Male , Motor Neurons/drug effects , Quinoxalines/pharmacology , Raphe Nuclei/drug effects , Rats , Rats, Wistar , Receptors, Serotonin, 5-HT2/drug effects , Receptors, Serotonin, 5-HT2/physiology , Ritanserin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...