Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Haematol ; 194(5): 870-878, 2021 09.
Article in English | MEDLINE | ID: mdl-34272731

ABSTRACT

Even in the era of highly active combination antiretroviral therapy (cART), patients with HIV have a disproportionate risk of developing aggressive lymphomas that are frequently Epstein-Barr virus (EBV)-related. Here, we investigate HIV-associated diffuse large B-cell lymphoma (HIV-DLBCL) and compare EBV-positive and EBV-negative cases. HIV-DLBCL were identified from two academic medical centres and characterised by immunohistochemistry, EBV status, fluorescence in situ hybridisation, cell of origin determination by gene expression profiling, and targeted deep sequencing using a custom mutation panel of 334 genes. We also applied the Lymphgen tool to determine the genetic subtype of each case. Thirty HIV-DLBCL were identified, with a median patient age of 46 years and male predominance (5:1). Thirteen cases (48%) were EBV-positive and 14 (52%) EBV-negative. Nine of the 16 tested cases (56%) had MYC rearrangement, three (19%) had BCL6 (two of which were double hit MYC/BCL6) and none had BCL2 rearrangements. Using the Lymphgen tool, half of the cases (15) were classified as other. All HIV-DLBCL showed mutational abnormalities, the most frequent being TP53 (37%), MYC (30%), STAT3 (27%), HIST1H1E (23%), EP300 (20%), TET2 (20%), SOCS1 (17%) and SGK1 (17%). EBV-negative cases were mostly of germinal centre B-cell (GCB) origin (62%), showed more frequent mutations per case (a median of 13·5/case) and significant enrichment of TP53 (57% vs. 15%; P = 0·046), SGK1 (36% vs. 0%; P = 0·04), EP300 (43% vs. 0%; P = 0·02) and histone-modifying gene (e.g. HIST1H1E, HIST1H1D, 79% vs. 31%; P = 0·02) mutations. EBV-positive cases were mostly of non-GCB origin (70%), with fewer mutations per case (median 8/case; P = 0·007), and these tumours were enriched for STAT3 mutations (P = 0·10). EBV-positive cases had a higher frequency of MYC mutations but the difference was not significant (36% vs. 15%; P = 0·38). EBV-association was more frequent in HIV-DLBCLs, arising in patients with lower CD4 counts at diagnosis (median 46·5 vs. 101, P = 0·018). In the era of cART, approximately half of HIV-DLBCL are EBV-related. HIV-DLBCL are enriched for MYC rearrangements, MYC mutations and generally lack BCL2 rearrangements, regardless of EBV status. Among HIV-DLBCL, tumours that are EBV-negative and EBV-positive appear to have important differences, the latter arising in context of lower CD4 count, showing frequent non-GCB origin, lower mutation burden and recurrent STAT3 mutations.


Subject(s)
Epstein-Barr Virus Infections/complications , HIV Infections/complications , Janus Kinases/genetics , Lymphoma, Large B-Cell, Diffuse/virology , STAT Transcription Factors/genetics , Adult , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Female , HIV Infections/genetics , HIV Infections/metabolism , Herpesvirus 4, Human/isolation & purification , Humans , Janus Kinases/metabolism , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Male , Middle Aged , Mutation , STAT Transcription Factors/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction
3.
Front Oncol ; 10: 640, 2020.
Article in English | MEDLINE | ID: mdl-32457837

ABSTRACT

Splenic marginal zone lymphoma (SMZL) is a rare, indolent non-Hodgkin's lymphoma that affects 0. 13 per 100,000 persons annually. Overall survival of SMZL is estimated to reach 8-11 years in most cases, but up to 30% of SMZL cases develop aggressive presentations resulting in greatly diminished time of survival. SMZL presents with a very heterogeneous molecular profile, making diagnosis problematic, and accurate prognosis even less likely. The study herein has identified a potential diagnostic gene expression signature with highly specific predictive utility, coined the SMZL-specific Gene Expression Signature (SSGES). Additionally, five of the most impactful markers identified within the SSGES were selected for a five-protein panel, for further evaluation among control and SMZL patient samples. These markers included EME2, ERCC5, SETBP1, USP24, and ZBTB32. When compared with control spleen and other B-cell lymphoma subtypes, significantly higher expression was noticed in SMZL samples when stained for EME2 and USP24. Additionally, ERCC5, SETBP1, USP24, and ZBTB32 staining displayed indications of prognostic value for SMZL patients. Delineation of the SSGES offers a unique SMZL signature that could provide diagnostic utility for a malignancy that has historically been difficult to identify, and the five-marker protein panel provides additional support for such findings. These results should be further investigated and validated in subsequent molecular investigations of SMZL so it may be potentially incorporated into standard oncology practice for improving the understanding and outlook for SMZL patients.

5.
J Infect Public Health ; 12(6): 884-889, 2019.
Article in English | MEDLINE | ID: mdl-31229413

ABSTRACT

BACKGROUND: Shiga-toxin producing Escherichia coli (STEC) O26:H11 is the second most common cause of severe diarrhea and hemolytic uremic syndrome worldwide. The implementation of whole genome sequencing (WGS) enhances the detection and in-depth characterization of these non-O157 STEC strains. The aim of this study was to compare WGS to phenotypic serotyping and pulse field gel electrophoresis (PFGE) for characterization of STECO26 strains following a zoonotic outbreak from cattle to humans. METHODS AND RESULTS: This study evaluated seven E. coli strains; two strains isolated from two children with gastrointestinal symptoms and five strains from five calves suspected as the source of infection. Six of these isolates were serotyped phenotypically and by WGS as E. coli O26:H11 while one bovine isolate could be serotyped only by WGS as E. coli O182:H25. Stx1 was detected in two human- and two bovine-isolates using PCR and WGS. Using WGS, all four STECO26 isolates belong to sequence type (ST) 21 while the two stx1 negative E. coli O26 were ST29. All four STECO26 isolates were indistinguishable by PFGE. However, the data generated by WGS linked the two human STECO26 isolates to only one bovine STECO26 strain by having identical high-quality single nucleotide polymorphisms (hqSNPs) and identical virulence factor profiles while the remaining bovine STECO26 isolate differed by 7 hqSNPs and lacked virulence factor toxB. CONCLUSIONS: These data demonstrated that WGS provided significant information beyond traditional epidemiological tools allowing for comprehensive characterization of the STEC. Using this approach, WGS was able to identify the specific source of infection in this study.


Subject(s)
Cattle Diseases/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Serogroup , Shiga-Toxigenic Escherichia coli/classification , Whole Genome Sequencing/methods , Zoonoses/epidemiology , Animals , Cattle , Cattle Diseases/microbiology , Cattle Diseases/transmission , Child , Diarrhea/epidemiology , Diarrhea/microbiology , Diarrhea/veterinary , Electrophoresis, Gel, Pulsed-Field , Escherichia coli Infections/microbiology , Female , Genotype , Humans , Male , Molecular Epidemiology/methods , Molecular Typing , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Zoonoses/microbiology , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...