Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 343(3): 617-27, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22935731

ABSTRACT

ABT-348 [1-(4-(4-amino-7-(1-(2-hydroxyethyl)-1H-pyrazol-4-yl)thieno[3,2-c]pyridin-3-yl)phenyl)-3-(3-fluorophenyl)urea] is a novel ATP-competitive multitargeted kinase inhibitor with nanomolar potency (IC(50)) for inhibiting binding and cellular autophosphorylation of Aurora B (7 and 13 nM), C (1 and 13 nM), and A (120 and 189 nM). Cellular activity against Aurora B is reflected by inhibition of phosphorylation of histone H3, induction of polyploidy, and inhibition of proliferation of a variety of leukemia, lymphoma, and solid tumor cell lines (IC(50) = 0.3-21 nM). In vivo inhibition of Aurora B was confirmed in an engrafted leukemia model by observing a decrease in phosphorylation of histone H3 that persisted in a dose-dependent manner for 8 h and correlated with plasma concentration of ABT-348. Evaluation of ABT-348 across a panel of 128 kinases revealed additional potent binding activity (K(i) < 30 nM) against vascular endothelial growth factor receptor (VEGFR)/platelet-derived growth factor receptor (PDGFR) families and the Src family of cytoplasmic tyrosine kinases. VEGFR/PDGFR binding activity correlated with inhibition of autophosphorylation in cells and inhibition of vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation (IC(50) ≤ 0.3 nM). Evidence of on-target activity in vivo was provided by the potency for blocking VEGF-mediated vascular permeability and inducing plasma placental growth factor. Activity against the Src kinase family was evident in antiproliferative activity against BCR-ABL chronic myeloid leukemia cells and cells expressing the gleevec-resistant BCR-ABL T315I mutation. On the basis of its unique spectrum of activity, ABT-348 was evaluated and found effective in representative solid tumor [HT1080 and pancreatic carcinoma (MiaPaCa), tumor stasis] and hematological malignancy (RS4;11, regression) xenografts. These results provide the rationale for clinical assessment of ABT-348 as a therapeutic agent in the treatment of cancer.


Subject(s)
Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Phenylurea Compounds/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , src-Family Kinases/antagonists & inhibitors , Aminopyridines/chemistry , Aminopyridines/pharmacokinetics , Aminopyridines/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Aurora Kinase B , Aurora Kinases , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Histones/antagonists & inhibitors , Human Umbilical Vein Endothelial Cells , Humans , Leukemia, Experimental/drug therapy , Leukemia, Experimental/enzymology , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Molecular Structure , NIH 3T3 Cells , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/therapeutic use , Time Factors , Xenograft Model Antitumor Assays
2.
Bioorg Med Chem ; 20(15): 4635-45, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22766219

ABSTRACT

PARP-1, the most abundant member of the PARP superfamily of nuclear enzymes, has emerged as a promising molecular target in the past decade particularly for the treatment of cancer. A number of PARP-1 inhibitors, including veliparab discovered at Abbott, have advanced into different stages of clinical trials. Herein we describe the development of a new tetrahydropyridopyridazinone series of PARP-1 inhibitors. Many compounds in this class, such as 20w, displayed excellent potency against the PARP-1 enzyme with a K(i) value of <1nM and an EC(50) value of 1nM in a C41 whole cell assay. The presence of the NH in the tetrahydropyridyl ring of the tetrahydropyridopyridazinone scaffold improved the pharmacokinetic properties over similar carbon based analogs. Compounds 8c and 20u are orally available, and have demonstrated significant efficacy in a B16 murine xenograft model, potentiating the efficacy of temozolomide (TMZ).


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Neoplasms, Experimental/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Pyridazines/pharmacology , Pyridines/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Female , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Neoplasms, Experimental/enzymology , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 22(14): 4750-5, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22695126

ABSTRACT

In an effort to identify kinase inhibitors with dual KDR/Aurora B activity and improved aqueous solubility compared to the Abbott dual inhibitor ABT-348, a series of novel pyrazole pyrimidines structurally related to kinase inhibitor AS703569 were prepared. SAR work provided analogs with significant cellular activity, measureable aqueous solubility and moderate antitumor activity in a mouse tumor model after weekly ip dosing. Unfortunately these compounds were pan-kinase inhibitors that suffered from narrow therapeutic indices which prohibited their use as antitumor agents.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Amination , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinase B , Aurora Kinases , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Molecular , Molecular Structure , Pyrimidines/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
Bioorg Med Chem Lett ; 22(9): 3208-12, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22465635

ABSTRACT

In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Urea/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Mice , Protein Kinase Inhibitors/chemistry , Vascular Endothelial Growth Factor A
7.
J Med Chem ; 53(8): 3142-53, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20337371

ABSTRACT

We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K(i) of 1 nM and an EC(50) of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , BRCA1 Protein/deficiency , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Biological Availability , Blood-Brain Barrier/metabolism , Carboplatin/administration & dosage , Cell Line, Tumor , Crystallography, X-Ray , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Drug Screening Assays, Antitumor , Female , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Mice, SCID , Models, Molecular , Neoplasm Transplantation , Stereoisomerism , Structure-Activity Relationship , Temozolomide , Transplantation, Heterologous
8.
J Med Chem ; 52(21): 6803-13, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19888760

ABSTRACT

Small molecule inhibitors of PARP-1 have been pursued by various organizations as potential therapeutic agents either capable of sensitizing cytotoxic treatments or acting as stand-alone agents to combat cancer. As one of the strategies to expand our portfolio of PARP-1 inhibitors, we pursued unsaturated heterocycles to replace the saturated cyclic amine derivatives appended to the benzimidazole core. Not only did a variety of these new generation compounds maintain high enzymatic potency, many of them also displayed robust cellular activity. For example, the enzymatic IC(50) and cellular EC(50) values were as low as 1 nM or below. Compounds 24 (EC(50) = 3.7 nM) and 44 (EC(50) = 7.8 nM), featuring an oxadiazole and a pyridine moiety, respectively, demonstrated balanced potency and PK profiles. In addition, these two molecules exhibited potent oral in vivo efficacy in potentiating the cytotoxic agent temozolomide in a B16F10 murine melanoma model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Oxadiazoles/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors , Pyridines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Alkylating , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line, Tumor , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Synergism , Female , Humans , Male , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Poly (ADP-Ribose) Polymerase-1 , Pyridines/pharmacokinetics , Pyridines/pharmacology , Structure-Activity Relationship , Temozolomide , Transplantation, Heterologous
9.
J Med Chem ; 52(21): 6621-36, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19842661

ABSTRACT

Pim-1, Pim-2, and Pim-3 are a family of serine/threonine kinases which have been found to be overexpressed in a variety of hematopoietic malignancies and solid tumors. Benzothienopyrimidinones were discovered as a novel class of Pim inhibitors that potently inhibit all three Pim kinases with subnanomolar to low single-digit nanomolar K(i) values and exhibit excellent selectivity against a panel of diverse kinases. Protein crystal structures of the bound Pim-1 complexes of benzothienopyrimidinones 3b (PDB code 3JYA), 6e (PDB code 3JYO), and 12b (PDB code 3JXW) were determined and used to guide SAR studies. Multiple compounds exhibited potent antiproliferative activity in K562 and MV4-11 cells with submicromolar EC(50) values. For example, compound 14j inhibited the growth of K562 cells with an EC(50) value of 1.7 muM and showed K(i) values of 2, 3, and 0.5 nM against Pim-1, Pim-2, and Pim-3, respectively. These novel Pim kinase inhibitors efficiently interrupted the phosphorylation of Bad in both K562 and LnCaP-Bad cell lines, indicating that their potent biological activities are mechanism-based. The pharmacokinetics of 14j was studied in CD-1 mice and shown to exhibit bioavailability of 76% after oral dosing. ADME profiling of 14j suggested a long half-life in both human and mouse liver microsomes, good permeability, modest protein binding, and no CYP inhibition below 20 muM concentration.


Subject(s)
Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidinones/chemical synthesis , Thiophenes/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Cell Membrane Permeability , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Models, Molecular , Phosphorylation , Protein Conformation , Proto-Oncogene Proteins c-pim-1/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , bcl-Associated Death Protein/metabolism
10.
Bioorg Med Chem Lett ; 19(15): 4050-4, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19553114

ABSTRACT

Based on screening hit 1, a series of tricyclic quinoxalinones have been designed and evaluated for inhibition of PARP-1. Substitutions at the 7- and 8-positions of the quinoxalinone ring led to a number of compounds with good enzymatic and cellular potency. The tricyclic quinoxalinone class is sensitive to modifications of both the amine substituent and the tricyclic core. The synthesis and structure-activity relationship studies are presented.


Subject(s)
Chemistry, Pharmaceutical/methods , Poly(ADP-ribose) Polymerase Inhibitors , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis , Cell Nucleus/metabolism , DNA Repair , Drug Design , Drug Screening Assays, Antitumor , Humans , Kinetics , Models, Molecular , Molecular Conformation , Niacinamide/chemistry , Structure-Activity Relationship
11.
J Med Chem ; 52(2): 514-23, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19143569

ABSTRACT

We have developed a series of cyclic amine-containing benzimidazole carboxamide PARP inhibitors with a methyl-substituted quaternary center at the point of attachment to the benzimidazole ring system. These compounds exhibit excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of 3a (2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide, ABT-888), currently in human phase I clinical trials. Compound 3a displayed excellent potency against both the PARP-1 and PARP-2 enzymes with a K(i) of 5 nM and in a C41 whole cell assay with an EC(50) of 2 nM. In addition, 3a is aqueous soluble, orally bioavailable across multiple species, and demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide (TMZ) and in an MX-1 breast cancer xenograft model in combination with either carboplatin or cyclophosphamide.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , Melanoma, Experimental/pathology , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Area Under Curve , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Biological Availability , Carboplatin/administration & dosage , Cyclophosphamide/administration & dosage , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Dogs , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Female , Haplorhini , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, SCID , Rats , Temozolomide
12.
Anticancer Res ; 28(5A): 2625-35, 2008.
Article in English | MEDLINE | ID: mdl-19035287

ABSTRACT

ABT-888 is a potent, orally bioavailable PARP-1/2 inhibitor shown to potentiate DNA damaging agents. The ability to potentiate temozolomide (TMZ) and develop a biological marker for PARP inhibition was evaluated in vivo. Doses/schedules that achieve TMZ potentiation in the B16F10 syngeneic melanoma model were utilized to develop an ELISA to detect a pharmacodynamic marker, ADP ribose polymers (pADPr), after ABT 888 treatment. ABT-888 enhanced TMZ antitumor activity, in a dose-proportional manner with no observed toxicity (44-75% tumor growth inhibition vs. TMZ monotherapy), but did not show single agent activity. Extended ABT-888 dosing schedules showed no advantage compared to simultaneous TMZ administration. Efficacy correlated with plasma/tumor drug concentrations. Intratumor drug levels correlated with a dose-proportional/time-dependent reduction in pADPr. Potentiation of TMZ activity by ABT-888 correlated with drug levels and inhibition of PARP activity in vivo. ABT-888 is in Phase 1 trials using a validated ELISA based on the assay developed here to assess pharmacological effect.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzimidazoles/pharmacology , Dacarbazine/analogs & derivatives , Melanoma, Experimental/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Cell Line, Tumor , Dacarbazine/administration & dosage , Dacarbazine/pharmacokinetics , Dacarbazine/pharmacology , Drug Administration Schedule , Drug Synergism , Melanoma, Experimental/enzymology , Melanoma, Experimental/metabolism , Mice , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Temozolomide
13.
Bioorg Med Chem ; 16(14): 6965-75, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18541433

ABSTRACT

We have developed a series of cyclic amine-containing benzimidazole carboxamide poly(ADP-ribose)polymerase (PARP) inhibitors, with good PARP-1 enzyme potency, as well as cellular potency. These efforts led to the identification of a lead preclinical candidate, 10b, 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide (A-620223). 10b displayed very good potency against both the PARP-1 enzyme with a K(i) of 8nM and in a whole cell assay with an EC(50) of 3nM. 10b is aqueous soluble, orally bioavailable across multiple species, and demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide (TMZ) and in an MX-1 breast xenograph model in combination with cisplatin.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Breast Neoplasms/drug therapy , Melanoma, Experimental/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cisplatin/therapeutic use , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Mice , Structure-Activity Relationship , Temozolomide , Transplantation, Heterologous , Xenograft Model Antitumor Assays
14.
J Med Chem ; 51(13): 3777-87, 2008 Jul 10.
Article in English | MEDLINE | ID: mdl-18557606

ABSTRACT

7-Aminopyrazolo[1,5- a]pyrimidine urea receptor tyrosine kinase inhibitors have been discovered. Investigation of structure-activity relationships of the pyrazolo[1,5- a]pyrimidine nucleus led to a series of 6-(4- N, N'-diphenyl)ureas that potently inhibited a panel of vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) kinases. Several of these compounds, such as 34a, are potent inhibitors of kinase insert domain-containing receptor tyrosine kinase (KDR) both enzymatically (<10 nM) and cellularly (<10 nM). In addition, compound 34a possesses a favorable pharmacokinetic profile and demonstrates efficacy in the estradiol-induced murine uterine edema (UE) model (ED 50 = 1.4 mg/kg).


Subject(s)
Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Edema/drug therapy , Edema/enzymology , Female , Male , Mice , Models, Molecular , Molecular Structure , Phenylurea Compounds/chemistry , Phenylurea Compounds/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Receptor Protein-Tyrosine Kinases/chemistry , Structure-Activity Relationship , Urea/chemistry , Uterine Diseases/drug therapy , Uterine Diseases/enzymology
15.
J Med Chem ; 51(5): 1231-41, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18260617

ABSTRACT

A series of benzoisoxazoles and benzoisothiazoles have been synthesized and evaluated as inhibitors of receptor tyrosine kinases (RTKs). Structure-activity relationship studies led to the identification of 3-amino benzo[ d]isoxazoles, incorporating a N, N'-diphenyl urea moiety at the 4-position that potently inhibited both the vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor families of RTKs. Within this series, orally bioavailable compounds possessing promising pharmacokinetic profiles were identified, and a number of compounds demonstrated in vivo efficacy in models of VEGF-stimulated vascular permeability and tumor growth. In particular, compound 50 exhibited an ED 50 of 2.0 mg/kg in the VEGF-stimulated uterine edema model and 81% inhibition in the human fibrosarcoma (HT1080) tumor growth model when given orally at a dose of 10 mg/kg/day.


Subject(s)
Isoxazoles/chemical synthesis , Models, Molecular , Oxazoles/chemical synthesis , Phenylurea Compounds/chemical synthesis , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Binding Sites , Biological Availability , Capillary Permeability/drug effects , Cell Line , Cell Line, Tumor , Edema/drug therapy , Female , Humans , Isoxazoles/pharmacokinetics , Isoxazoles/pharmacology , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Phosphorylation , Structure-Activity Relationship , Uterus/blood supply , Xenograft Model Antitumor Assays
16.
Bioorg Med Chem Lett ; 18(1): 386-90, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18023347
17.
J Med Chem ; 50(17): 4162-76, 2007 Aug 23.
Article in English | MEDLINE | ID: mdl-17658776

ABSTRACT

A novel series of 5,10-dihydro-dibenzo[b,e][1,4]diazepin-11-ones have been synthesized as potent and selective checkpoint kinase 1 (Chk1) inhibitors via structure-based design. Aided by protein X-ray crystallography, medicinal chemistry efforts led to the identification of compound 46d, with potent enzymatic activity against Chk1 kinase. While maintaining a low cytotoxicity of its own, compound 46d exhibited a strong ability to abrogate G2 arrest and increased the cytotoxicity of camptothecin by 19-fold against SW620 cells. Pharmacokinetic studies revealed that it had a moderate bioavailabilty of 20% in mice. Two important binding interactions between compound 46b and Chk1 kinase, revealed by X-ray cocrystal structure, were hydrogen bonds between the hinge region and the amide bond of the core structure and a hydrogen bond between the methoxy group and Lys38 of the protein.


Subject(s)
Antineoplastic Agents/chemical synthesis , Azepines/chemical synthesis , Benzodiazepinones/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Azepines/chemistry , Azepines/pharmacology , Benzodiazepinones/chemistry , Benzodiazepinones/pharmacology , Biological Availability , Camptothecin/pharmacology , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Doxorubicin/pharmacology , Drug Design , Drug Synergism , Humans , Mice , Models, Molecular , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Structure-Activity Relationship
18.
Clin Cancer Res ; 13(9): 2728-37, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17473206

ABSTRACT

PURPOSE: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. EXPERIMENTAL DESIGN: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. RESULTS: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with K(i)s of 5.2 and 2.9 nmol/L, respectively. The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1 breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d x 10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. CONCLUSIONS: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.


Subject(s)
Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Administration, Oral , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Biological Availability , Blood-Brain Barrier/metabolism , Cell Line, Tumor , DNA Damage , Disease Models, Animal , Dogs , Drug Synergism , Female , Haplorhini , Humans , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred Strains , Xenograft Model Antitumor Assays
19.
J Med Chem ; 50(9): 2011-29, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17425296

ABSTRACT

The synthesis of a novel series of 1,4-dihydroindeno[1,2-c]pyrazoles with acetylene-type side chains is described. Optimization of those compounds as KDR kinase inhibitors identified 8, which displayed an oral activity in an estradiol-induced murine uterine edema model (ED50 = 3 mg/kg) superior to Sutent (ED50 = 9 mg/kg) and showed potent antitumor efficacy in an MX-1 human breast carcinoma xenograft tumor growth model (tumor growth inhibition = 90% at 25 mg/kg.day po). The compound was docked into a homology model of the homo-tetrameric pore domain of the hERG potassium channel to identify strategies to improve its cardiac safety profile. Systematic interruption of key binding interactions between 8 and Phe656, Tyr652, and Ser624 yielded 90, which only showed an IC50 of 11.6 microM in the hERG patch clamp assay. The selectivity profile for 8 and 90 revealed that both compounds are multitargeted receptor tyrosine kinase inhibitors with low nanomolar potencies against the members of the VEGFR and PDGFR kinase subfamilies.


Subject(s)
Alkynes/chemical synthesis , Antineoplastic Agents/chemical synthesis , Ether-A-Go-Go Potassium Channels/drug effects , Indenes/chemical synthesis , Pyrazoles/chemical synthesis , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Thiophenes/chemical synthesis , Alkynes/adverse effects , Alkynes/pharmacology , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Binding, Competitive , Cell Line , ERG1 Potassium Channel , Edema/chemically induced , Edema/drug therapy , Estradiol , Ether-A-Go-Go Potassium Channels/physiology , Female , Humans , Indenes/adverse effects , Indenes/pharmacology , Mice , Mice, Inbred BALB C , Models, Molecular , Patch-Clamp Techniques , Protein Binding , Pyrazoles/adverse effects , Pyrazoles/metabolism , Pyrazoles/pharmacology , Radioligand Assay , Stereoisomerism , Structure-Activity Relationship , Thiophenes/metabolism , Thiophenes/pharmacology , Uterine Diseases/chemically induced , Uterine Diseases/drug therapy , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
20.
J Med Chem ; 50(7): 1584-97, 2007 Apr 05.
Article in English | MEDLINE | ID: mdl-17343372

ABSTRACT

In our continued efforts to search for potent and novel receptor tyrosine kinase (RTK) inhibitors as potential anticancer agents, we discovered, through a structure-based design, that 3-aminoindazole could serve as an efficient hinge-binding template for kinase inhibitors. By incorporating an N,N'-diaryl urea moiety at the C4-position of 3-aminodazole, a series of RTK inhibitors were generated, which potently inhibited the tyrosine kinase activity of the vascular endothelial growth factor receptor and the platelet-derived growth factor receptor families. A number of compounds with potent oral activity were identified by utilizing an estradiol-induced mouse uterine edema model and an HT1080 human fibrosarcoma xenograft tumor model. In particular, compound 17p (ABT-869) was found to possess favorable pharmacokinetic profiles across different species and display significant tumor growth inhibition in multiple preclinical animal models.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Indazoles/chemical synthesis , Phenylurea Compounds/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Administration, Oral , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Binding Sites , Edema/chemically induced , Edema/pathology , Estradiol , Female , Humans , Hydrophobic and Hydrophilic Interactions , Indazoles/chemistry , Indazoles/pharmacology , Male , Mice , Models, Molecular , NIH 3T3 Cells , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Phosphorylation , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Uterus/drug effects , Uterus/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...