Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 1(1): 314-321, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-36132467

ABSTRACT

High content nitrogen, sulfur and phosphorus heteroatoms assembled in tree-like dendrimers (DG n ) are confined within the galleries of two-dimensional graphene oxide (GO). The presence of the ternary diethyl-N-ethyl-ammonium groups on the dendrimer peripheries ensures the exfoliation of graphene sheets thereby affording interfacially bridged, three-dimensional heteroatom-enriched graphene-based hybrid nanostructures (DG n -GO). Dendrimer generation (from 1 to 4) that reflects the bulkiness of these conceived nano-trees impacts increasingly the degree of dispersion-exfoliation and sheet desordering. The long-term stability of these aqueous suspensions associated with their handling flexibility allows uniform accommodation of the resulting hybrid materials as flame-retardants in bioplastics.

2.
Carbohydr Polym ; 183: 287-293, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29352886

ABSTRACT

Temporal release of synergistic and/or complementary chemicals (e.g.: drugs) is recognized as extremely challenging because of their frequently intertwined kinetic delivery and presently, straightforward concepts enabling to circumvent this bottleneck are missing in the open literature. In this framework, we report herein on aldehyde-functionalized, transparent and flexible chitosan-montmorillonite hybrid films that act as a new generation of eco-friendly, controlled-chemical release bioplastics. These dynamically-assembled nanomaterials are designed by a ternary assembly from biowaste derived chitin biopolymer, aromatic aldehydes and layered clay nanoparticles. On the basis of their geometrical and conformational properties, the oxygenated groups on the grafted aromatics interact preferentially with either the base Schiff belonging to the carbohydrate (via intramolecular CNHO-Ar known as "imine clip") or with the hydroxyl groups belonging to the clay surface (via intermolecular Si-OHO-Ar). The exfoliated clay nanoparticles within the carbohydrate polymer enables either accelerating or slowing down of the imine (CN) hydrolysis depending on the interaction of the conjugated aromatics. This provides the driving force for fine tuning host-guest interactions at the molecular level and constitutes an entry toward subtle discrimination of different chemicals (e.g. complementary fertilizers, synergistic drugs) during their sequential release.


Subject(s)
Bentonite/chemistry , Biocompatible Materials/chemical synthesis , Chitosan/analogs & derivatives , Drug Carriers/chemical synthesis , Aldehydes/chemistry , Biodegradable Plastics/chemical synthesis , Drug Liberation , Nanoparticles/chemistry
3.
Mol Pharm ; 14(11): 4087-4097, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28960997

ABSTRACT

Original metallophosphorus dendrimers (generation 3, 48 terminal groups) have been prepared via the complexation of phosphorus dendrimers bearing imino-pyridino end groups with Au(III) or with both Au(III) and Cu(II). The complexation of the dendrimer with Au(III), leading to 1G3-[Au48][AuCl4]48, strongly increased the antiproliferative activities against both KB and HL-60 tumoral cell lines, showing IC50s in the low nanomolar range. It can be noticed also that this gold conjugated phosphorus dendrimer displayed low activity on the quiescent cell line EPC versus its potent antiproliferative activity against actively dividing cells. In order to evaluate the potential synergistic effect between Au(III) and Cu(II) and the influence of the number of Au(III) moieties on the surface of dendrimer against the proliferative activities, nine other original dendrimers with several surface modifications have been prepared. Whatever the number of Au(III) moieties introduced on the surface of dendrimers, all the dendrimers prepared displayed similar potency (nanomolar range) to 1G3-[Au48][AuCl4]48 against KB and HL60. In marked contrast synergistic effects on the antimicrobial activity of some of these phosphorus dendrimers are observed when both Au(III) and Cu(II) are present on the dendritic structure.


Subject(s)
Copper/chemistry , Dendrimers/chemistry , Gold/chemistry , Phosphorus/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Line, Tumor , HL-60 Cells , Humans , Molecular Structure
4.
Eur J Med Chem ; 132: 142-156, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28350998

ABSTRACT

A multivalent phosphorus dendrimer 1G3 and its corresponding Cu-complex, 1G3-Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G3-Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G3-Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway.


Subject(s)
Apoptosis/drug effects , Dendrimers/chemistry , Dendrimers/pharmacology , bcl-2-Associated X Protein/drug effects , Biological Transport, Active/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Copper/chemistry , Drug Resistance, Neoplasm , Humans , Molecular Structure , Phosphorus/chemistry , bcl-2-Associated X Protein/metabolism
5.
Eur J Med Chem ; 122: 656-673, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27448922

ABSTRACT

The well-known diuretic Ethacrynic acid (EA, Edecrin), showing low anti-proliferative activities, was chemically modified at different positions. The new EA derivatives have been tested in vitro in anti-proliferative assays on both tumor KB (epidermal carcinoma) and leukemia HL60 (promyelocytic) cells suitable targets for anticancer activity. Reduction of the α-ß double bond of EA completely abolished anti-cancer activities, whereas introduction of either 2-(4-substituted phenyl)ethanamine (series A) or 4-(4-substituted phenyl)piperazine (series B) moieties generated compounds showing moderate to strong anti-proliferative activities against human cancer cell lines. Several substitutions on the phenyl of these two moieties are tolerated. The mechanism of action of the EA derivatives prepared in this study is more complex than the inhibition of glutathione S-transferase π ascribed as unique effect to EA and might help to overcome tumor resistances.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ethacrynic Acid/chemistry , Ethacrynic Acid/pharmacology , Caspase 3/metabolism , Caspase 7/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Drug Design , Enzyme Activation/drug effects , Glutathione S-Transferase pi/antagonists & inhibitors , HL-60 Cells , Humans , KB Cells
6.
Carbohydr Polym ; 146: 353-61, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27112884

ABSTRACT

Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS

Subject(s)
Aluminum Silicates/chemistry , Biomimetics , Carbon Dioxide/chemistry , Chitosan/chemistry , Microspheres , Clay , Food Packaging , Gels , Porosity , Water
7.
Chem Commun (Camb) ; 51(100): 17716-9, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26489786

ABSTRACT

Photoactive viologen fragments were covalently embedded within the material framework during the self-assembly and sol-gel polymerisation of phosphonate-terminated dendrimers and soluble titanium-oxo-species. The resulting porous anisotropic phosphonate-bridged-crystalline anatase materials serve as new hosts to disperse and stabilize small gold nanoparticles.


Subject(s)
Dendrimers/chemistry , Metal Nanoparticles/chemistry , Organophosphonates/chemistry , Titanium/chemistry , Viologens/chemistry , Gold/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Polymerization , Porosity
8.
Org Lett ; 17(17): 4320-3, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26308587

ABSTRACT

The first palladium-catalyzed oxidative alkenylation of (1H)- and (2H)-indazole derivatives with various olefins is described. The use of Pd(OAc)2 as the catalyst and Ag2CO3 as the oxidant promoted the selective C3-monoalkenylation of (1H)-indazoles and (2H)-indazoles, affording the desired products in good yields. An original oxidative C7-alkenylation of 3-substituted (1H)-indazoles was also developed. The oxidative alkenylation of (1H)-indazole was successfully applied to the total synthesis of the drug candidate gamendazole in a step- and atom-economical fashion.


Subject(s)
Indazoles/chemical synthesis , Palladium/chemistry , Alkenes/chemistry , Catalysis , Indazoles/chemistry , Molecular Structure , Oxidants/chemistry , Oxidation-Reduction , Stereoisomerism
9.
ACS Appl Mater Interfaces ; 7(36): 19994-20003, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26305597

ABSTRACT

Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.


Subject(s)
Dendrimers/chemistry , Nanostructures/chemistry , Titanium/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , CHO Cells , Candida albicans/drug effects , Cell Survival/drug effects , Cricetinae , Cricetulus , Erythrocytes/cytology , Erythrocytes/metabolism , Gram-Negative Bacteria , Gram-Positive Bacteria/drug effects , Hemolysis/drug effects , Humans , Nanomedicine , Nanostructures/toxicity , Porosity , Scattering, Small Angle , Surface Properties , X-Ray Diffraction
10.
Dalton Trans ; 44(35): 15544-56, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26239184

ABSTRACT

The sol-gel co-condensation of organo-phosphonates to titanium alkoxides enables access to novel organic-inorganic hybrids based on phosphonate-bridged titanium dioxide. In this contribution, we bring new perspectives to the long established sol-gel mineralization of titanium alkoxide species, by harnessing the virtues of the well-designed phosphonate-terminated phosphorus dendrimers as reactive amphiphilic nanoreactor, confined medium and cross-linked template to generate discrete crystalline anatase nanoparticles at low temperature (T = 60 °C). An accurate investigation on several parameters (dendrimer generation, dendrimer-to-titanium alkoxide ratio, precursor reactivity, temperature, solvent nature, salt effect) allows a correlation between the network condensation, the opening porous framework and the crystalline phase formation. The evolution of the dendrimer skeleton upon heat treatment has been deeply monitored by means of (31)P NMR, XPS and Raman spectroscopy. Increasing the heteroatom content within a titania network provides the driving force for enhancing their photocatalytic water splitting ability for hydrogen production.

11.
Chemistry ; 21(17): 6400-8, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25754619

ABSTRACT

The preparation of novel families of phosphorus-based macromolecular architectures called "onion peel" phosphorus nanodendritic systems is reported. This construct is based on the versatility of methods of synthesis using several building blocks and on the capability of these systems to undergo regioselective reactions within the cascade structure. Sustainable metal-free routes such as the Staudinger reaction or Schiff-base condensation, involving only water and nitrogen as byproducts, allow access to several dendritic macromolecules bearing up to seven different phosphorus units in their backbone, each of them featuring specific reactivity. The presence of the highly aurophilic P=N-P=S fragment enables selective ligation of Au(I) within the dendritic framework.

12.
J Mater Chem B ; 3(13): 2714-2724, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-32262919

ABSTRACT

In this contribution, amorphous silica (a-SiO2), native SBA-15 silica as well as four functional SBA-15-type silicates modified with aminopropyl (SBA-NH2), mercaptopropyl (SBA-SH), ethylcarboxylic (SBA-COOH) and undecenoic acid (SBA-FA-COOH) were prepared by the co-condensation route under similar self-assembly and sol-gel conditions. Next, the impact of these materials on red blood cells was evaluated by studying cell haemolysis and haemoglobin adsorption. Moreover, the influence of the presence of human serum albumin (HSA) on erythrocyte haemolysis and cytotoxicity toward B14 Chinese fibroblasts were investigated. Based on these variants, the role of the mesostructure, the nature of the functional group located on the silica surface and the influence of the linker length have been elucidated.

13.
Nanoscale ; 7(9): 3915-22, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25503793

ABSTRACT

The well-known reactive diuretic ethacrynic acid (EA, Edecrin), with low antiproliferative activities, was chemically modified and grafted onto phosphorus dendrimers and the corresponding simple branched phosphorus dendron-like derivatives affording novel nanodevices showing moderate to strong antiproliferative activities against liquid and solid tumor cell lines, respectively.


Subject(s)
Dendrimers/chemistry , Ethacrynic Acid/chemistry , Phosphorus/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dendrimers/chemical synthesis , Ethacrynic Acid/pharmacology , HL-60 Cells , Humans , Molecular Conformation
14.
J Org Chem ; 79(16): 7286-93, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25046583

ABSTRACT

A novel direct C7-arylation of indazoles with iodoaryls is described using Pd(OAc)2 as catalyst, 1,10-phenanthroline as ligand, and K2CO3 as base in refluxing DMA. Direct C7-arylation of 3-substituted 1H-indazole containing an EWG on the arene ring gave the expected products in good isolated yields. In addition, a one-pot Suzuki-Miyaura/arylation procedure leading to C3,C7-diarylated indazoles has been developed.


Subject(s)
Indazoles/chemistry , Palladium/chemistry , Phenanthrolines/chemistry , Catalysis , Ligands , Molecular Structure
15.
Chem Commun (Camb) ; 50(53): 6981-3, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24841905

ABSTRACT

The viologen-skeleton reacts with a hydrazine-terminated cyclotriphosphazene core to provide novel dendritic macromolecular asterisks that efficiently exchange, deliver and stabilize gold nanoparticles for up to eight months.

16.
J Nanosci Nanotechnol ; 14(2): 2012-23, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24749470

ABSTRACT

This review reports on the recent advances in the synthesis and physico-chemical properties of palladium-containing perovskites. Initially, the perovskite structure is briefly reviewed, then palladium-containing perovskites synthesis and physico-chemical properties are detailed. The applications of palladium-containing perovskites in catalysis; namely, NO reduction, methane combustion, methanol as well as ethanol oxidation, are briefly highlighted. The involvement and the important contribution of palladium-containing perovskites in cross-coupling reactions, especially Suzuki-Miyaura, Sonogashira, Ulmann and Grignard, are discussed.


Subject(s)
Calcium Compounds/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxides/chemistry , Palladium/chemistry , Titanium/chemistry , Catalysis , Crystallization/methods , Particle Size
17.
J Nanosci Nanotechnol ; 14(1): 308-31, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24730265

ABSTRACT

Polysaccharides are a new class of pervasive biopolymers that display many advantages including wide availability, sustainability, inherent inclusion of chemical functionality, biocompatibility and biodegradability. Current efforts are focused on the catalytic transformation of these macromolecules into fuels and platform chemicals. However, there is growing interest in using biopolymers directly to create functional materials. Particularly, the ability of some polysaccharides to form physical and chemical porous hydrogels has opened new avenues for material synthesis and has been the driving force for rethinking the strategies used to create value-added nanomaterials from naturally available biomass. Among them, chitosan is on the rise due to the presence of amino groups on the polymer backbone that distinguishes it as a unique natural cationic polymer. This contribution sheds light on the opportunities offered by engineering the secondary structure of chitosan fibrillar hydrogels. The optimization and stabilization of the open framework structure of these soft-materials are crucial to designing novel functional hybrid materials, dispersed chitosan-metal nanoparticles and hierarchical porous inorganic materials.


Subject(s)
Biocompatible Materials/chemical synthesis , Chitosan/chemistry , Crystallization/methods , Hydrogels/chemical synthesis , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Elastic Modulus , Hardness , Macromolecular Substances/chemistry , Molecular Conformation , Particle Size , Surface Properties
19.
Mol Pharm ; 10(4): 1459-64, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23410260

ABSTRACT

Novel multivalent copper(II)-conjugated phosphorus dendrimers and their corresponding mononuclear copper(II) complexes were synthesized, characterized, and screened for antiproliferative activity against human cancer cell lines. Selected copper ligands were grafted on the surface of phosphorus dendrimers of generation G(n) (n = 1 to 3): N-(pyridin-2-ylmethylene)ethanamine for dendrimers 1G(n), N-(di(pyridin-2-yl)methylene)ethanamine for dendrimers 2G(n), and 2-(2-methylenehydrazinyl)pyridine for dendrimers 3G(n). The results indicated that the most potent derivatives are 1G(n) and 1G(n)-Cu versus 2G(n), 2G(n)-Cu, and 3G(n), 3G(n)-Cu. A direct relationship between the growth inhibitory effect and the number of terminal moieties or the amount of copper complexed to the dendrimer was observed in copper-complexed 1 series and noncomplexed 1 series. These data clearly suggested that cytotoxicity increased with the number of terminal moieties available and was boosted by the presence of complexed Cu atoms. Importantly, no cytotoxic effect was observed with CuCl2 at the same concentrations. Finally, 1G3 and 1G3-Cu have been selected for antiproliferative studies against a panel of tumor cell lines: 1G3 and 1G3-Cu demonstrated potent antiproliferative activities with IC50 values ranging 0.3-1.6 µM. Interestingly, the complexation of the terminal ligands of 1G3 dendrimers by copper(II) metal strongly increased the IC50 values in noncancer cells lines referred to as "safety" cell lines.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Copper/chemistry , Dendrimers/chemical synthesis , Dendrimers/pharmacology , Phosphorus/chemistry , Animals , Biocompatible Materials/chemistry , Carps , Cell Line , Cell Line, Tumor , Cell Proliferation , Drug Design , HL-60 Cells , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Structure , Nanomedicine
20.
Adv Drug Deliv Rev ; 65(10): 1316-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23415951

ABSTRACT

Drugs are introduced into the body by numerous routes such as enteral (oral, sublingual and rectum administration), parenteral (intravascular, intramuscular, subcutaneous and inhalation administration), or topical (skin and mucosal membranes). Each route has specific purposes, advantages and disadvantages. Today, the oral route remains the preferred one for different reasons such as ease and compliance by patients. Several nanoformulated drugs have been already approved by the FDA, such as Abelcet®, Doxil®, Abraxane® or Vivagel®(Starpharma) which is an anionic G4-poly(L-lysine)-type dendrimer showing potent topical vaginal microbicide activity. Numerous biochemical studies, as well as biological and pharmacological applications of both dendrimer based products (dendrimers as therapeutic compounds per se, like Vivagel®) and dendrimers as drug carriers (covalent conjugation or noncovalent encapsulation of drugs) were described. It is widely known that due to their outstanding physical and chemical properties, dendrimers afforded improvement of corresponding carried-drugs as dendrimer-drug complexes or conjugates (versus plain drug) such as biodistribution and pharmacokinetic behaviors. The purpose of this manuscript is to review the recent progresses of dendrimers as nanoscale drug delivery systems for the delivery of drugs using enteral, parenteral and topical routes. In particular, we focus our attention on the emerging and promising routes such as oral, transdermal, ocular and transmucosal routes using dendrimers as delivery systems.


Subject(s)
Dendrimers/administration & dosage , Drug Delivery Systems , Animals , Dendrimers/chemistry , Drug Administration Routes , Humans , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...