Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35456786

ABSTRACT

In Algeria, Smen is a fermented butter produced in households using empirical methods. Smen fermentation is driven by autochthonous microorganisms; it improves butter shelf-life and yields highly fragrant products used as ingredients in traditional dishes as well as in traditional medicine. The present study is aimed at investigating microbial diversity and dynamics during Algerian Smen fermentation using both culture-dependent and culture-independent approaches, as well as by monitoring volatile organic compound production. To reach this goal, fifteen Smen samples (final products) produced in households from different regions in Algeria were collected and analyzed. In addition, microbial and volatile compound dynamics at the different stages of Smen manufacturing were investigated for one Smen preparation. The results showed that Smen is a microbiologically safe product, as all hygiene and safety criteria were respected. The dominant microorganisms identified by both techniques were LAB and yeasts. Lactococcus spp. and Streptococcus thermophilus were the main bacterial species involved in spontaneous raw milk fermentation preceding butter-making, while lactobacilli and enterococci were the only bacteria found to be viable during Smen maturation. Regarding fungal diversity, yeast species were only recovered from two mature Smen samples by culturing, while different species (e.g., Geotrichum candidum, Moniliella sp.) were identified in all samples by the culture-independent approach. Using microbial analysis of a single batch, many of these were found viable during manufacturing. Concerning the volatile profiles, they were highly diverse and characterized by a high prevalence of short chain fatty acids, methylketones, and esters. Correlation analysis between microbial diversity and volatile profiles showed that several yeast (Moniliella sp., K. marxianus) and LAB (e.g., Lactococcus spp., S. thermophilus) species were strongly correlated with one or more volatile organic compound families, including several ethyl esters and methyl ketones that can be linked to pleasant, sweetly floral, fruity, buttery, and creamy odors. This study clearly identified key microorganisms involved in Smen fermentation and maturation that could be used in the future for better fermentation control and improvement of quality attributes.

2.
Curr Microbiol ; 76(10): 1095-1104, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31270565

ABSTRACT

Fermented cereals are part of the main traditional diets of many people in Africa, usually obtained from artisanal production. The intensification of their manufacturing, responding to the consumers demand, requires a better control to ensure their sanitary, nutritional, and taste qualities, hence, the need of selecting accurate and safe starter cultures. In the present study, 48 lactic acid bacteria (LAB) strains, previously isolated from Algerian fermented wheat lemzeiet, were analyzed for different technological properties. 14 LAB strains, belonging to Pediococcus pentosaceus, Enterococcus faecium, Lactobacillus curvatus, Lactobacillus brevis, and Leuconostoc mesenteroides species, decreased rapidly the pH of the flour extract broth close to 4 or below. 91% of strains showed extracellular protease activity, but only 12% were amylolytics. 18 LAB strains inhibited or postponed the growth of three fungal targets Rhodotorula mucilaginosa UBOCC-A-216004, Penicillium verrucosum UBOCC-A-109221, and Aspergillus flavus UBOCC-A-106028. The strains belonging to Lactobacillus spp., Leuconostoc fallax, L. mesenteroides, and Weissella paramesenteroides were the most antifungal ones. Multiplex PCR for biogenic amines' production did not reveal any of the genes involved in the production of putrescine, histamine, and tyramine for 17 of the 48 strains. The obtained results provided several candidates for use as starter culture in the future production of lemzeiet.


Subject(s)
Fermented Foods/microbiology , Food Microbiology , Lactobacillales/isolation & purification , Lactobacillales/metabolism , Triticum/microbiology , Amylases/metabolism , Antifungal Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biogenic Amines/biosynthesis , DNA, Bacterial/genetics , Fermentation , Hydrogen-Ion Concentration , Lactobacillales/enzymology , Lactobacillales/genetics , Peptide Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...