Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 144(16): 164110, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27131534

ABSTRACT

An elaborate variational procedure of reduced dimensionality based on explicitly correlated coupled clusters calculations is applied to understand the far infrared spectrum of ethylene-glycol, an astrophysical species. This molecule can be classified in the double molecular symmetry group G8 and displays nine stable conformers, gauche and trans. In the gauche region, the effect of the potential energy surface anisotropy due to the formation of intramolecular hydrogen bonds is relevant. For the primary conformer, stabilized by a hydrogen bond, the ground vibrational state rotational constants are computed to be A0 = 15 369.57 MHz, B0 = 5579.87 MHz, and C0 = 4610.02 MHz corresponding to differences of 6.3 MHz, 7.2 MHz, and 3.5 MHz from the experimental parameters. Ethylene glycol displays very low torsional energy levels whose classification is not straightforward and requires a detailed analysis of the torsional wavefunctions. Tunneling splittings are significant and unpredictable due to the anisotropy of the potential energy surface PES. The ground vibrational state splits into 16 sublevels separated ∼142 cm(-1). The splitting of the "G1 sublevels" was calculated to be ∼0.26 cm(-1) in very good agreement with the experimental data (0.2 cm(-1) = 6.95 MHz). Transitions corresponding to the three internal rotation modes allow assignment of previously observed Q branches. Band patterns, calculated between 362.3 cm(-1) and 375.2 cm(-1), 504 cm(-1) and 517 cm(-1), and 223.3 cm(-1) and 224.1 cm(-1), that correspond to the tunnelling components of the v21 fundamental (v21 = OH-torsional mode), are assigned to the prominent experimental Q branches.

2.
J Phys Chem A ; 119(17): 4057-64, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25826231

ABSTRACT

Highly correlated ab initio methods (CCSD(T) and RCCSD(T)-F12) are employed for the spectroscopic characterization of the gas phase of dimethyl carbonate (DMC) at low temperatures. DMC, a relevant molecule for atmospheric and astrochemical studies, shows only two conformers, cis-cis and trans-cis, respectively, of C2v and Cs symmetries. cis-cis-DMC represents the most stable form. Using RCCSD(T)-F12 theory, the two sets of equilibrium rotational constants have been computed to be Ae = 10 493.15 MHz, Be = 2399.22 MHz, and Ce = 2001.78 MHz (cis-cis) and to be Ae = 6585.16 MHz, Be = 3009.04 MHz, and Ce = 2120.36 MHz (trans-cis). Centrifugal distortions constants and anharmonic frequencies for all of the vibrational modes are provided. Fermi displacements are predicted. The minimum energy pathway for the cis-cis → trans-cis interconversion process is restricted by a barrier of ∼3500 cm(-1). DMC displays internal rotation of two methyl groups. If the nonrigidity is considered, the molecule can be classified in the G36 (cis-cis) and the G18 (trans-cis) symmetry groups. For cis-cis-DMC, both internal tops are equivalent, and the torsional motions are restricted by V3 potential energy barriers of 384.7 cm(-1). trans-cis-DMC shows two different V3 barriers of 631.53 and 382.6 cm(-1). The far-infrared spectra linked to the torsional motion of both conformers are analyzed independently using a variational procedure and a two-dimensional flexible model. In cis-cis-DMC, the ground vibrational state splits into nine components: one nondegenerate, 0.000 cm(-1) (A1), four quadruply degenerate, 0.012 cm(-1) (G), and four doubly degenerate 0.024 cm(-1) (E1 and E3). The methyl torsional fundamentals are obtained to lie at 140.274 cm(-1) (ν15) and 132.564 cm(-1) (ν30).

SELECTION OF CITATIONS
SEARCH DETAIL
...