Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 373(3): 587-98, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17868693

ABSTRACT

Lethocerus indirect flight muscle has two isoforms of troponin C, TnC-F1 and F2, which are unusual in having only a single C-terminal calcium binding site (site IV, isoform F1) or one C-terminal and one N-terminal site (sites IV and II, isoform F2). We show here that thin filaments assembled from rabbit actin and Lethocerus tropomyosin (Tm) and troponin (Tn) regulate the binding of rabbit myosin to rabbit actin in much the same way as the mammalian regulatory proteins. The removal of calcium reduces the rate constant for S1 binding to regulated actin about threefold, independent of which TmTn is used. This is consistent with calcium removal causing the TmTn to occupy the B or blocked state to about 70% of the total. The mid point pCa for the switch differed for TnC-F1 and F2 (pCa 6.9 and 6.0, respectively) consistent with the reported calcium affinities for the two TnCs. Equilibrium titration of S1 binding to regulated actin filaments confirms calcium regulated binding of S1 to actin and shows that in the absence of calcium the three actin filaments (TnC-F1, TnC-F2 and mammalian control) are almost indistinguishable in terms of occupancy of the B and C states of the filament. In the presence of calcium TnC-F2 is very similar to the control with approximately 80% of the filament in the C-state and 10-15% in the fully on M-State while TnC-F1 has almost 50% in each of the C and M states. This higher occupancy of the M-state for TnC-F1, which occurs above pCa 6.9, is consistent with this isoform being involved in the calcium activation of stretch activation. However, it leaves unanswered how a C-terminal calcium binding site of TnC can activate the thin filament.


Subject(s)
Actins/metabolism , Heteroptera/metabolism , Muscle, Skeletal/physiology , Myofibrils/physiology , Tropomyosin/metabolism , Troponin C/metabolism , Animals , Calcium/metabolism , Models, Biological , Muscle Contraction/physiology , Protein Binding , Rabbits , Signal Transduction
2.
J Muscle Res Cell Motil ; 28(1): 49-58, 2007.
Article in English | MEDLINE | ID: mdl-17436057

ABSTRACT

We have expressed alpha & beta isoforms of mammalian striated muscle tropomyosin (Tm) and alpha-Tm carrying the D175N or E180G cardiomyopathy mutations. In each case the Tm carries an Ala-Ser N-terminal extension to mimic the acetylation of the native Tm. We show that these Ala-Ser modified proteins are good analogues of the native Tm in the assays used here. We go on to use an in vitro kinetic approach to define the assembly of actin filaments with the Tm isoforms with either a cardiac or a skeletal muscle troponin (cTn, skTn). With skTn the calcium sensitivity of the actin filament is the same for alpha & beta-Tm and there is little change with the mutant Tms. For cTn switching from alpha to beta-Tm causes an increase of calcium sensitivity of 0.2 pCa units. D175N is very similar to the wild type alpha-Tm and E180G shows a small increase in calcium sensitivity of about 0.1 pCa unit. The formation of the switched-off blocked-state of the actin filament is independent of the Tm isoform but does differ for cardiac versus skeletal Tn. The in vitro assays developed here provide a novel, simple and efficient method for assaying the behaviour of expressed thin filament proteins.


Subject(s)
Actin Cytoskeleton/metabolism , Calcium/metabolism , Tropomyosin/metabolism , Troponin/metabolism , Amino Acid Sequence , Animals , Cardiomyopathies , Humans , Molecular Sequence Data , Muscle, Skeletal/metabolism , Myocardium/metabolism , Protein Isoforms/metabolism , Rabbits , Rats , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...