Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198484

ABSTRACT

In this work, a sensor yarn based on a natural sisal yarn containing a non-electro-conductive core impregnated with PVA polymer and coated by PEDOT:PSS polymer as an electro-conductive sheath was investigated. The main objectives include the development of this new sensor yarn as a first step. Then, we look towards the insertion of this sensor yarn into different woven structures followed by the monitoring of the mechanical behaviour of composite materials made with these fibrous reinforcements. The combined effect of the structural geometry and the number of PEDOT:PSS coating layers on the properties of the sensor yarns was investigated. It was found that the number of PEDOT:PSS coating layers could strongly influence the electromechanical behaviours of the sensor yarns. Different methods of characterization were employed on strain-sensor yarns with two and four coating layers of PEDOT:PSS. The piezo-resistive strain-sensor properties of these selected coating layers were evaluated. Cyclic stretching-releasing tests were also performed to investigate the dynamic strain-sensing behavior. The obtained results indicated that gauge factor values can be extracted in three strain regions for two and four coating layers, respectively. Moreover, these strain-sensor yarns showed accurate and stable sensor responses under cyclic conditions. Furthers works are in progress to investigate the mechanism behind these first results of these sisal fibre-based sensors.


Subject(s)
Polymers , Textiles , Electric Conductivity
2.
Polymers (Basel) ; 13(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809243

ABSTRACT

The effects of the yarn composition system inside 3D woven high-performance textiles are not well investigated and understood against their final ballistic impact behaviour. The current study aims to examine the ballistic impact performances of armour panels made of different 3D woven fabric variants through postmortem observations. Four high-performance five-layer 3D woven fabric variants were engineered based on their different warp yarn compositions but similar area density. A 50 × 50 cm2 armour system of each variant, which comprises eight nonbonded but aligned panels, namely, 3D-40-8/0 (or 8/0), 3D-40-8/4 (or 8/4), 3D-40-8/8 (or 8/8) and 3D-40-4/8 (or 4/8), were prepared and moulded to resemble female frontal morphology. The armour systems were then tested with nonperforation ballistic impacts according to the National Institute of Justice (NIJ) 0101.06 standard Level-IIIA. Two high-speed cameras were used to capture the event throughout the test. Nondestructive investigation (NDI) using optical microscopic and stereoscopic 3D digital images were employed for the analysis. The armour panels made of the 8/0 and 4/8 fabric variants were perforated, whereas the armour made of the 8/8 and 8/4 fabric variants showed no perforation. Besides, the armour made of the 8/4 fabric variant revealed higher local and global surface displacements than the other armours. The current research findings are useful for further engineering of 3D woven fabric for seamless women's impact protective clothing.

3.
Materials (Basel) ; 13(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977529

ABSTRACT

Recently, three-dimensional (3D) warp interlock fabric has been involved in composite reinforcement and soft ballistic material due to its great moldability, improved impact energy-absorbing capacity, and good intra-ply resistance to delamination behaviors. However, understanding the effects of different parameters of the fabric on its mechanical behavior is necessary before the final application. The fabric architecture and its internal yarn composition are among the common influencing parameters. The current research aims to explore the effects of the warp yarn interchange ratio in the 3D warp interlock para-aramid architecture on its mechanical behavior. Thus, four 3D warp interlock variants with different warp (binding and stuffer) yarn ratios but similar architecture and structural characteristics were engineered and manufactured. Tensile and flexural rigidity mechanical tests were carried out at macro- and meso-scale according to standard EN ISO 13 934-1 and nonwoven bending length (WSP 90.5(05)), respectively. Based on the results, the warp yarn interchange ratio in the structure revealed strong influences on the tensile properties of the fabric at both the yarn and final fabric stages. Moreover, the bending stiffness of the different structures showed significant variation in both the warp and weft directions. Thus, the interchange rations of stuffer and binding warp yarn inside the 3D warp interlock fabric were found to be very key in optimizing the mechanical performance of the fabric for final applications.

4.
Polymers (Basel) ; 12(5)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370271

ABSTRACT

As promising fibrous reinforcements in the thick composites manufacturing, 3-dimensional warp interlock fabrics (3DWIFs) are recognised more and more in the industry for their outstanding mechanical properties compared to the 2D laminates. The present work shows the influence of the fabric's architecture on the tensile behaviour of 3DWIFs. Five kinds of 3D fabrics with different interlock structures have been designed according to the main category of binding warp yarn evolution. These five 3DWIFs, containing both binding and stuffer warp yarns and produced with the same warp and weft densities, are experimentally tested via uniaxial tensile tests. The experimental results of the different 3DWIFs have been compared to find the optimal solution based on several mechanical performances. Fabric structures have an impact on tensile properties both in the warp and weft directions. Furthermore, other influential factors, for example, the yarn crimps during the weaving process and the crimp angles of binding warp yarns in 3DWIFs, are investigated and discussed in the paper. The influence of the total crimp angles related to the binding path on the tensile properties of 3DWIFs via the inter yarns friction is summarised.

5.
Sensors (Basel) ; 13(8): 10749-64, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23959238

ABSTRACT

The quality of fibrous reinforcements used in composite materials can be monitored during the weaving process. Fibrous sensors previously developed in our laboratory, based on PEDOT:PSS, have been adapted so as to directly measure the mechanical stress on fabrics under static or dynamic conditions. The objective of our research has been to develop new sensor yarns, with the ability to locally detect mechanical stresses all along the warp or weft yarn. This local detection is undertaken inside the weaving loom in real time during the weaving process. Suitable electronic devices have been designed in order to record in situ measurements delivered by this new fibrous sensor yarn.


Subject(s)
Glass/chemistry , Manufactured Materials/analysis , Micro-Electrical-Mechanical Systems/instrumentation , Polystyrenes/chemistry , Textiles/analysis , Thiophenes/chemistry , Transducers , Equipment Design , Equipment Failure Analysis , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...