Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(34): 31225-31236, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663488

ABSTRACT

An increase in astrocyte reactivity has been described in Alzheimer's disease and seems to be related to the presence of a pro-inflammatory environment. Reactive astrocytes show an increase in the density of the 18 kDa translocator protein (TSPO), but TSPO involvement in astrocyte functions remains poorly understood. The goal of this study was to better characterize the mechanisms leading to the increase in TSPO under inflammatory conditions and the associated consequences. For this purpose, the C6 astrocytic cell line was used in the presence of lipopolysaccharide (LPS) or TSPO overexpression mediated by the transfection of a plasmid encoding TSPO. The results show that nonlethal doses of LPS induced TSPO expression at mRNA and protein levels through a STAT3-dependent mechanism and increased the number of mitochondria per cell. LPS stimulated reactive oxygen species (ROS) production and decreased glucose consumption (quantified by the [18F]FDG uptake), and these effects were diminished by FEPPA, a TSPO antagonist. The transfection-mediated overexpression of TSPO induced ROS production, and this effect was blocked by FEPPA. In addition, a synergistic effect of overexpression of TSPO and LPS on ROS production was observed. These data show that the increase of TSPO in astrocytic cells is involved in the regulation of glucose metabolism and in the pro-inflammatory response. These data suggest that the overexpression of TSPO by astrocytes in Alzheimer's disease would have rather deleterious effects by promoting the pro-inflammatory response.

2.
ACS Omega ; 6(29): 18719-18727, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337211

ABSTRACT

Apoptosis-dependent cell death of astrocytes has been described in Alzheimer's disease and is linked to the presence of two markers of the pathology: the ß-amyloid peptide (Aß) and the hyperphosphorylated Tau protein. Astrocytes also show reactive states characterized by the overexpression of the 18 kDa translocator protein (TSPO). However, TSPO is also known, in other areas of research, to participate in cell proliferation and death. Regulation of its function by autopolymerization has been described, but its involvement in apoptosis remains unknown. The aim was to determine the effects of Aß, Tau, and TSPO antagonists on proliferation/cell death and TSPO polymerization in the C6 astrocytic cell line. The dose-effect on cell death in response to Aß and Tau was observed but without alterations of TSPO density and polymerization. In contrast, nanomolar doses of antagonists stimulated cell proliferation, although micromolar doses induced cell death with a reduction in TSPO density and an increase in the ratio between the 36 and the 72 kDa TSPO polymers. Therefore, an alteration in the density and polymerization of TSPO appears to be related to cell death induced by TSPO antagonisms. In contrast, Aß- and Tau-induced death seems to be independent of TSPO alterations. In conclusion, even if its role in cell death and proliferation is demonstrated, TSPO seems to, in the context of Alzheimer's disease, rather represent a marker of the activity of astrocytes than of cell death.

SELECTION OF CITATIONS
SEARCH DETAIL
...