Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 36(4): 710-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25430859

ABSTRACT

BACKGROUND AND PURPOSE: DSC perfusion has been increasingly used in conjunction with other contrast-enhanced MR applications and therefore there is need for contrast-dose reduction when feasible. The purpose of this study was to establish the feasibility of reduced-contrast-dose brain DSC perfusion by using a probabilistic Bayesian method and to compare the results with the commonly used singular value decomposition technique. MATERIALS AND METHODS: Half-dose (0.05-mmol/kg) and full-dose (0.1-mmol/kg) DSC perfusion studies were prospectively performed in 20 patients (12 men; 34-70 years of age) by using a 3T MR imaging scanner and a gradient-EPI sequence (TR/TE, 1450/22 ms; flip angle, 90°). All DSC scans were processed with block circulant singular value decomposition and Bayesian probabilistic methods. SNR analysis was performed in both half-dose and full-dose groups. The CBF, CBV, and MTT maps from both full-dose and half-dose scans were evaluated qualitatively and quantitatively in both WM and GM on coregistered perfusion maps. Statistical analysis was performed by using a t test, regression, and Bland-Altman analysis. RESULTS: The SNR was significantly (P < .0001) lower in the half-dose group with 32% and 40% reduction in GM and WM, respectively. In the half-dose group, the image-quality scores were significantly higher in Bayesian-derived CBV (P = .02) and MTT (P = .004) maps in comparison with block circulant singular value decomposition. Quantitative values of CBF, CBV, and MTT in Bayesian-processed data were comparable and without a statistically significant difference between the half-dose and full-dose groups. The block circulant singular value decomposition-derived half-dose perfusion values were significantly different from those of the full-dose group both in GM (CBF, P < .001; CBV, P = .02; MTT, P = .02) and WM (CBF, P < .001; CBV, P = .003; MTT, P = .01). CONCLUSIONS: Reduced-contrast-dose (0.05-mmol/kg) DSC perfusion of the brain is feasible at 3T by using the Bayesian probabilistic method with quantitative results comparable with those of the full-dose protocol.


Subject(s)
Bayes Theorem , Brain/blood supply , Cerebrovascular Circulation/physiology , Contrast Media/administration & dosage , Magnetic Resonance Imaging/methods , Adult , Female , Humans , Male , Middle Aged
2.
Science ; 326(5956): 1080-2, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19779150

ABSTRACT

Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H.E.S.S.) array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 billion electron volts is F = (5.5 +/- 1.0(stat) +/- 2.8(sys)) x 10(-13) cm(-2) s(-1), implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is five times as large as that in our Galaxy.

3.
Phys Rev Lett ; 101(17): 170402, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-18999724

ABSTRACT

In the past few decades, several models have predicted an energy dependence of the speed of light in the context of quantum gravity. For cosmological sources such as active galaxies, this minuscule effect can add up to measurable photon-energy dependent time lags. In this Letter a search for such time lags during the High Energy Stereoscopic System observations of the exceptional very high energy flare of the active galaxy PKS 2155-304 on 28 July 2006 is presented. Since no significant time lag is found, lower limits on the energy scale of speed of light modifications are derived.

4.
Phys Rev Lett ; 101(26): 261104, 2008 Dec 31.
Article in English | MEDLINE | ID: mdl-19437632

ABSTRACT

The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...