Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1189289, 2023.
Article in English | MEDLINE | ID: mdl-37841625

ABSTRACT

Aphanomyces euteiches is the most damaging soilborne pea pathogen in France. Breeding of pea resistant varieties combining a diversity of quantitative trait loci (QTL) is a promising strategy considering previous research achievements in dissecting polygenic resistance to A. euteiches. The objective of this study was to provide an overview of the diversity of QTL and marker haplotypes for resistance to A. euteiches, by integrating a novel QTL mapping study in advanced backcross (AB) populations with previous QTL analyses and genome-wide association study (GWAS) using common markers. QTL analysis was performed in two AB populations derived from the cross between the susceptible spring pea variety "Eden" and the two new sources of partial resistance "E11" and "LISA". The two AB populations were genotyped using 993 and 478 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for resistance to A. euteiches in controlled conditions and in infested fields at two locations. GWAS and QTL mapping previously reported in the pea-Aphanomyces collection and from four recombinant inbred line (RIL) populations, respectively, were updated using a total of 1,850 additional markers, including the markers used in the Eden x E11 and Eden x LISA populations analysis. A total of 29 resistance-associated SNPs and 171 resistance QTL were identified by GWAS and RIL or AB QTL analyses, respectively, which highlighted 10 consistent genetic regions confirming the previously reported QTL. No new consistent resistance QTL was detected from both Eden x E11 and Eden x LISA AB populations. However, a high diversity of resistance haplotypes was identified at 11 linkage disequilibrium (LD) blocks underlying consistent genetic regions, especially in 14 new sources of resistance from the pea-Aphanomyces collection. An accumulation of favorable haplotypes at these 11 blocks was confirmed in the most resistant pea lines of the collection. This study provides new SNP markers and rare haplotypes associated with the diversity of Aphanomyces root rot resistance QTL investigated, which will be useful for QTL pyramiding strategies to increase resistance levels in future pea varieties.

2.
Genes (Basel) ; 14(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37510304

ABSTRACT

Evidence for reciprocal links between plant responses to biotic or abiotic stresses and architectural and developmental traits has been raised using approaches based on epidemiology, physiology, or genetics. Winter pea has been selected for years for many agronomic traits contributing to yield, taking into account architectural or phenological traits such as height or flowering date. It remains nevertheless particularly susceptible to biotic and abiotic stresses, among which Didymella pinodes and frost are leading examples. The purpose of this study was to identify and resize QTL localizations that control partial resistance to D. pinodes, tolerance to frost, and architectural or phenological traits on pea dense genetic maps, considering how QTL colocalizations may impact future winter pea breeding. QTL analysis revealed five metaQTLs distributed over three linkage groups contributing to both D. pinodes disease severity and frost tolerance. At these loci, the haplotypes of alleles increasing both partial resistance to D. pinodes and frost tolerance also delayed the flowering date, increased the number of branches, and/or decreased the stipule length. These results question both the underlying mechanisms of the joint control of biotic stress resistance, abiotic stress tolerance, and plant architecture and phenology and the methods of marker-assisted selection optimizing stress control and productivity in winter pea breeding.


Subject(s)
Pisum sativum , Plant Breeding , Pisum sativum/genetics , Phenotype , Quantitative Trait Loci , Stress, Physiological
3.
BMC Plant Biol ; 19(1): 98, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30866817

ABSTRACT

BACKGROUND: Dry pea production has increased substantially in North America over the last few decades. With this expansion, significant yield losses have been attributed to an escalation in Fusarium root rots in pea fields. Among the most significant rot rotting pathogenic fungal species, Fusarium solani fsp. pisi (Fsp) is one of the main causal agents of root rot of pea. High levels of partial resistance to Fsp has been identified in plant genetic resources. Genetic resistance offers one of the best solutions to control this root rotting fungus. A recombinant inbred population segregating for high levels of partial resistance, previously single nucleotide polymorphism (SNP) genotyped using genotyping-by-sequencing, was phenotyped for disease reaction in replicated and repeated greenhouse trials. Composite interval mapping was deployed to identify resistance-associated quantitative trait loci (QTL). RESULTS: Three QTL were identified using three disease reaction criteria: root disease severity, ratios of diseased vs. healthy shoot heights and dry plant weights under controlled conditions using pure cultures of Fusarium solani fsp. pisi. One QTL Fsp-Ps 2.1 explains 44.4-53.4% of the variance with a narrow confidence interval of 1.2 cM. The second and third QTL Fsp-Ps3.2 and Fsp-Ps3.3 are closely linked and explain only 3.6-4.6% of the variance. All of the alleles are contributed by the resistant parent PI 180693. CONCLUSION: With the confirmation of Fsp-Ps 2.1 now in two RIL populations, SNPs associated with this region make a good target for marker-assisted selection in pea breeding programs to obtain high levels of partial resistance to Fusarium root rot caused by Fusarium solani fsp. pisi.


Subject(s)
Disease Resistance/genetics , Fusarium/physiology , Pisum sativum/genetics , Plant Diseases/immunology , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Alleles , Genotype , Pisum sativum/immunology , Pisum sativum/microbiology , Phenotype , Plant Breeding , Plant Diseases/microbiology
4.
Front Plant Sci ; 8: 2195, 2017.
Article in English | MEDLINE | ID: mdl-29354146

ABSTRACT

Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.

5.
BMC Genomics ; 17: 121, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26892170

ABSTRACT

BACKGROUND: Progress in genetics and breeding in pea still suffers from the limited availability of molecular resources. SNP markers that can be identified through affordable sequencing processes, without the need for prior genome reduction or a reference genome to assemble sequencing data would allow the discovery and genetic mapping of thousands of molecular markers. Such an approach could significantly speed up genetic studies and marker assisted breeding for non-model species. RESULTS: A total of 419,024 SNPs were discovered using HiSeq whole genome sequencing of four pea lines, followed by direct identification of SNP markers without assembly using the discoSnp tool. Subsequent filtering led to the identification of 131,850 highly designable SNPs, polymorphic between at least two of the four pea lines. A subset of 64,754 SNPs was called and genotyped by short read sequencing on a subpopulation of 48 RILs from the cross 'Baccara' x 'PI180693'. This data was used to construct a WGGBS-derived pea genetic map comprising 64,263 markers. This map is collinear with previous pea consensus maps and therefore with the Medicago truncatula genome. Sequencing of four additional pea lines showed that 33 % to 64 % of the mapped SNPs, depending on the pairs of lines considered, are polymorphic and can therefore be useful in other crosses. The subsequent genotyping of a subset of 1000 SNPs, chosen for their mapping positions using a KASP™ assay, showed that almost all generated SNPs are highly designable and that most (95 %) deliver highly qualitative genotyping results. Using rather low sequencing coverages in SNP discovery and in SNP inferring did not hinder the identification of hundreds of thousands of high quality SNPs. CONCLUSIONS: The development and optimization of appropriate tools in SNP discovery and genetic mapping have allowed us to make available a massive new genomic resource in pea. It will be useful for both fine mapping within chosen QTL confidence intervals and marker assisted breeding for important traits in pea improvement.


Subject(s)
Chromosome Mapping , Genome, Plant , Pisum sativum/genetics , Polymorphism, Single Nucleotide , DNA, Plant/genetics , Genetic Markers , Genotype , Genotyping Techniques , Sequence Analysis, DNA
6.
Theor Appl Genet ; 127(6): 1319-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24695842

ABSTRACT

KEY MESSAGE: Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.


Subject(s)
Freezing , Pisum sativum/genetics , Quantitative Trait Loci , Stress, Physiological/genetics , Pisum sativum/physiology , Phenotype , Principal Component Analysis
7.
BMC Genomics ; 15: 126, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24521263

ABSTRACT

BACKGROUND: Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. RESULTS: We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs.We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. CONCLUSIONS: Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.


Subject(s)
Pisum sativum/genetics , Polymorphism, Single Nucleotide , Chromosome Mapping , Contig Mapping , Genes, Plant , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
8.
New Phytol ; 188(1): 42-51, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20456050

ABSTRACT

• Ectocarpus siliculosus has been proposed as a genetic and genomic model for the brown algae and the 214 Mbp genome of this organism has been sequenced. The aim of this project was to obtain a chromosome-scale view of the genome by constructing a genetic map using microsatellite markers that were designed based on the sequence supercontigs. • To map genetic markers, a segregating F(2) population was generated from a cross between the sequenced strain (Ec 32) and a compatible strain from northern Chile. Amplified fragment length polymorphism (AFLP) analysis indicated a significant degree of polymorphism (41%) between the genomes of these two parental strains. Of 1,152 microsatellite markers that were selected for analysis based on their location on long supercontigs, their potential as markers and their predicted ability to amplify a single genomic locus, 407 were found to be polymorphic. • A genetic map was constructed using 406 markers, resulting in 34 linkage groups. The 406 markers anchor 325 of the longest supercontigs on to the map, representing 70.1% of the genome sequence. • The Ectocarpus genetic map described here not only provides a large-scale assembly of the genome sequence, but also represents an important tool for future genetic analysis using this organism.


Subject(s)
Chromosome Mapping/methods , Expressed Sequence Tags , Genome/genetics , Phaeophyceae/genetics , Base Sequence , Chromosome Segregation/genetics , Contig Mapping , Genetic Linkage , Genetic Markers , Polymorphism, Genetic
9.
Theor Appl Genet ; 114(7): 1265-75, 2007 May.
Article in English | MEDLINE | ID: mdl-17318494

ABSTRACT

Bread wheat (Triticum aestivum), one of the world's major crops, is genetically very diverse. In order to select a representative sample of the worldwide wheat diversity, 3,942 accessions originating from 73 countries were analysed with a set of 38 genomic simple sequence repeat (SSR) markers. The number of alleles at each locus ranged from 7 to 45 with an average of 23.9 alleles per locus. The 908 alleles detected were used together with passport data to select increasingly large sub-samples that maximised both the number of observed alleles at SSR loci and the number of geographical origins. A final core of 372 accessions (372CC) was selected with this M strategy. All the different geographical areas and more than 98% of the allelic diversity at the 38 polymorphic loci were represented in this core. The method used to build the core was validated, by using a second set of independent markers [44 expressed sequence tag (EST)-SSR markers] on a larger sample of 744 accessions: 96.74% of the alleles observed at these loci had already been captured in the 372CC. So maximizing the diversity with a first set of markers also maximised the diversity at a second independent set of locus. To relate the genetic structure of wheat germplasm to its geographical origins, the two sets of markers were used to compute a dissimilarity matrix between geographical groups. Current worldwide wheat diversity is clearly divided according to wheat's European and Asian origins, whereas the diversity within each geographical group might be the result of the combined effects of adaptation of an initial germplasm to different environmental conditions and specific breeding practices. Seeds from each accession of the 372CC were multiplied and are now available to the scientific community. The genomic DNA of the 372CC, which can be entirely contained in a 384-deep-well storage plate, will be a useful tool for future studies of wheat genetic diversity.


Subject(s)
Microsatellite Repeats , Triticum/genetics , Alleles , Bread , Crosses, Genetic , DNA, Plant , Expressed Sequence Tags , Genes, Plant , Genetic Variation , Genome, Plant , Models, Genetic , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...