Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 178: 106415, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38852508

ABSTRACT

We propose a neuromimetic architecture capable of always-on pattern recognition, i.e. at any time during processing. To achieve this, we have extended an existing event-based algorithm (Lagorce et al., 2017), which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces (HOTS). Built from asynchronous events captured by a neuromorphic camera, these time surfaces allow to encode the local dynamics of a visual scene and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience, we have extended this method to improve its performance. First, we add a homeostatic gain control on the activity of neurons to improve the learning of spatio-temporal patterns (Grimaldi et al., 2021). We also provide a new mathematical formalism that allows an analogy to be drawn between the HOTS algorithm and Spiking Neural Networks (SNN). Following this analogy, we transform the offline pattern categorization method into an online and event-driven layer. This classifier uses the spiking output of the network to define new time surfaces and we then perform the online classification with a neuromimetic implementation of a multinomial logistic regression. These improvements not only consistently increase the performance of the network, but also bring this event-driven pattern recognition algorithm fully online. The results have been validated on different datasets: Poker-DVS (Serrano-Gotarredona and Linares-Barranco, 2015), N-MNIST (Orchard, Jayawant et al., 2015) and DVS Gesture (Amir et al., 2017). This demonstrates the efficiency of this bio-realistic SNN for ultra-fast object recognition through an event-by-event categorization process.

2.
PLoS Comput Biol ; 18(7): e1010270, 2022 07.
Article in English | MEDLINE | ID: mdl-35862423

ABSTRACT

Neurons in the primary visual cortex are selective to orientation with various degrees of selectivity to the spatial phase, from high selectivity in simple cells to low selectivity in complex cells. Various computational models have suggested a possible link between the presence of phase invariant cells and the existence of orientation maps in higher mammals' V1. These models, however, do not explain the emergence of complex cells in animals that do not show orientation maps. In this study, we build a theoretical model based on a convolutional network called Sparse Deep Predictive Coding (SDPC) and show that a single computational mechanism, pooling, allows the SDPC model to account for the emergence in V1 of complex cells with or without that of orientation maps, as observed in distinct species of mammals. In particular, we observed that pooling in the feature space is directly related to the orientation map formation while pooling in the retinotopic space is responsible for the emergence of a complex cells population. Introducing different forms of pooling in a predictive model of early visual processing as implemented in SDPC can therefore be viewed as a theoretical framework that explains the diversity of structural and functional phenomena observed in V1.


Subject(s)
Visual Cortex , Animals , Mammals , Models, Neurological , Neurons/physiology , Orientation/physiology , Photic Stimulation , Visual Cortex/physiology , Visual Pathways/physiology , Visual Perception/physiology
3.
PLoS Comput Biol ; 17(1): e1008629, 2021 01.
Article in English | MEDLINE | ID: mdl-33497381

ABSTRACT

Both neurophysiological and psychophysical experiments have pointed out the crucial role of recurrent and feedback connections to process context-dependent information in the early visual cortex. While numerous models have accounted for feedback effects at either neural or representational level, none of them were able to bind those two levels of analysis. Is it possible to describe feedback effects at both levels using the same model? We answer this question by combining Predictive Coding (PC) and Sparse Coding (SC) into a hierarchical and convolutional framework applied to realistic problems. In the Sparse Deep Predictive Coding (SDPC) model, the SC component models the internal recurrent processing within each layer, and the PC component describes the interactions between layers using feedforward and feedback connections. Here, we train a 2-layered SDPC on two different databases of images, and we interpret it as a model of the early visual system (V1 & V2). We first demonstrate that once the training has converged, SDPC exhibits oriented and localized receptive fields in V1 and more complex features in V2. Second, we analyze the effects of feedback on the neural organization beyond the classical receptive field of V1 neurons using interaction maps. These maps are similar to association fields and reflect the Gestalt principle of good continuation. We demonstrate that feedback signals reorganize interaction maps and modulate neural activity to promote contour integration. Third, we demonstrate at the representational level that the SDPC feedback connections are able to overcome noise in input images. Therefore, the SDPC captures the association field principle at the neural level which results in a better reconstruction of blurred images at the representational level.


Subject(s)
Deep Learning , Models, Neurological , Visual Pathways , Algorithms , Animals , Computational Biology , Feedback , Female , Humans , Image Processing, Computer-Assisted , Male , Visual Cortex/physiology
4.
Neural Comput ; 32(11): 2279-2309, 2020 11.
Article in English | MEDLINE | ID: mdl-32946716

ABSTRACT

Hierarchical sparse coding (HSC) is a powerful model to efficiently represent multidimensional, structured data such as images. The simplest solution to solve this computationally hard problem is to decompose it into independent layer-wise subproblems. However, neuroscientific evidence would suggest interconnecting these subproblems as in predictive coding (PC) theory, which adds top-down connections between consecutive layers. In this study, we introduce a new model, 2-layer sparse predictive coding (2L-SPC), to assess the impact of this interlayer feedback connection. In particular, the 2L-SPC is compared with a hierarchical Lasso (Hi-La) network made out of a sequence of independent Lasso layers. The 2L-SPC and a 2-layer Hi-La networks are trained on four different databases and with different sparsity parameters on each layer. First, we show that the overall prediction error generated by 2L-SPC is lower thanks to the feedback mechanism as it transfers prediction error between layers. Second, we demonstrate that the inference stage of the 2L-SPC is faster to converge and generates a refined representation in the second layer compared to the Hi-La model. Third, we show that the 2L-SPC top-down connection accelerates the learning process of the HSC problem. Finally, the analysis of the emerging dictionaries shows that the 2L-SPC features are more generic and present a larger spatial extension.

SELECTION OF CITATIONS
SEARCH DETAIL
...