Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(2)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050620

ABSTRACT

The proximity of the "post-antibiotic era", where infections and minor injuries could be a cause of death, there are urges to seek an alternative for the cure of infectious diseases. Copper nanoparticles and their huge potential as a bactericidal agent could be a solution. In this work, Cu and Cu oxide nanoparticles were synthesized by laser ablation in open air and in argon atmosphere using 532 and 1064 nm radiation generated by nanosecond and picosecond Nd:YVO4 lasers, respectively, to be directly deposited onto Ti substrates. Size, morphology, composition and the crystalline structure of the produced nanoparticles have been studied by the means of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), the energy dispersive spectroscopy of X-rays (EDS), selected area electron diffraction (SAED) and X-ray diffraction (XRD). The UV-VIS absorbance of the thin layer of nanoparticles was also measured, and the antibacterial capacity of the obtained deposits tested against Staphylococcus aureus. The obtained deposits consisted of porous coatings composed of copper and copper oxide nanoparticles interconnected to form chain-like aggregates. The use of the argon atmosphere contributed to reduce significantly the formation of Cu oxide species. The synthesized and deposited nanoparticles exhibited an inhibitory effect upon S. aureus.

2.
Acta Biomater ; 7(9): 3476-87, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21658477

ABSTRACT

Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials.


Subject(s)
Carbon Dioxide/chemistry , Glass/chemistry , Lasers , Animals , Buffers , Cells, Cultured , Ceramics , Materials Testing , Mice , Microscopy, Electron, Scanning , Osteoblasts/cytology , Osteoblasts/metabolism
3.
Nanotechnology ; 22(19): 195606, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21430320

ABSTRACT

TiO(2) nanoparticles with controllable average diameter have been obtained by laser ablation in water. A monomode ytterbium doped fiber laser (YDFL) was used to ablate a metallic titanium target placed in deionized water. The resulting colloidal solutions were subjected to laser radiation to study the resizing effect. The crystalline phases, morphology and optical properties of the obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), x-ray energy dispersive spectroscopy (EDS) and UV-vis absorption spectroscopy. The colloidal suspensions produced consisting of titanium dioxide crystalline nanoparticles show almost perfect spherical shape with diameters ranging from 3 to 40 nm. The nanoparticles are polycrystalline and exhibit anatase as well as rutile phases.


Subject(s)
Lasers , Metal Nanoparticles/chemistry , Nanotechnology/methods , Titanium/chemistry , Water/chemistry , Colloids/chemistry , Crystallization , Microscopy, Electron, Transmission/methods , Nanoparticles/chemistry , Spectrophotometry, Ultraviolet/methods , Ytterbium/chemistry
4.
Acta Biomater ; 6(3): 953-61, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19671459

ABSTRACT

Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid.


Subject(s)
Biocompatible Materials/chemistry , Body Fluids/chemistry , Glass/chemistry , Glass/radiation effects , Lasers , Materials Testing , Wettability
5.
J Biomed Mater Res A ; 64(4): 630-7, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12601774

ABSTRACT

The plasma spray (PS) technique is the most popular method commercially in use to produce calcium phosphate (CaP) coatings to promote fixation and osteointegration of the cementless prosthesis. Nevertheless, PS has some disadvantages, such as the poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In order to overcome the drawbacks of plasma spraying, we introduce in this work a new method to apply a CaP coating on a Ti alloy using a well-known technique in the metallurgical field: laser surface cladding. The physicochemical characterization of the coatings has been carried out by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). The biologic properties of the coatings have been assessed in vitro with human osteoblast-like MG-63 cells. The overall results of this study affirm that the Nd:YAG laser cladding technique is a promising method in the biomedical field.


Subject(s)
Calcium Phosphates , Coated Materials, Biocompatible , Lasers , Osteoblasts/physiology , Alloys , Calcium Phosphates/chemistry , Cell Division , Cell Line , Coated Materials, Biocompatible/chemistry , Humans , Osteoblasts/ultrastructure , Prostheses and Implants , Surface Properties , Titanium/chemistry , X-Ray Diffraction
6.
J Mater Sci Mater Med ; 13(6): 601-5, 2002 Jun.
Article in English | MEDLINE | ID: mdl-15348591

ABSTRACT

In the biomedical field, the synthetic hydroxyapatite [Ca(10)(PO)(4)(OH)(2)], with similarity to the inorganic component of bone but brittle, has been considered as the appropriate coating on stronger implant materials, such as metallic implants, for presenting a surface which is conductive to bone formation. Many industrial and laboratory techniques were developed to apply hydroxyapatite onto metallic substrates, such as electrophoretic deposition, ion sputtering, hot isostatic pressing, pulsed laser deposition and the only widely used method commercially available: plasma spraying. This work presents a new approach on how to bind calcium phosphate (CaP) to the Ti alloy with a well-known technique in the metallurgical field: laser surface alloying, in order to overcome the drawbacks of plasma spraying. The analysis of the results obtained and the description of the phenomena that take place in the coating process will complete this explorative study.

SELECTION OF CITATIONS
SEARCH DETAIL
...