Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 67(6): 1829-33, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15784845

ABSTRACT

We describe the development of a cell system for in vivo screening of inhibitors of the mevalonate pathway. To this aim, we have constructed a bicistronic mRNA, transcribed from a constitutive cytomegalovirus promoter, containing the Renilla reniformis luciferase RNA open reading frame sequence as first cistron and the Firefly luciferase RNA sequence as a second cistron. The intercistronic space is made of the R17 binding sequence of the bacteriophage R17 protein. A chimeric protein able to bind to a specific sequence in the hairpin and to induce internal ribosome entry in the RNA switches on translation of the second cistron. This chimeric protein is made up of the bacteriophage RNA binding domain (R17) fused to the ribosome recruitment core of the eIF-4G1 eukaryotic translation initiation factor and to the CAAX box of H-Ras addressing the protein to the plasma membrane where it is not efficient. Internal ribosome entry upstream of the Firefly cistron is therefore under the dependence of the mevalonate pathway inhibitors. Indeed, products that are able to inhibit protein farnesylation rescue the cytoplasmic location of the R17-eIF-4G-CAAX protein, which once more becomes a translation factor for the expression of the second cistron. To exemplify the system, the present work checks the ability of various antiestrogens to interfere with the mevalonate pathway. It seems that pure antiestrogen, able to selectively bind the estrogen receptor, is unable to switch on the second Firefly cistron although selective antiestrogen-binding-site ligands are able to do so.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Luciferases/genetics , Methionine/analogs & derivatives , Protein Prenylation/genetics , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , HeLa Cells , Humans , Luciferases/biosynthesis , Methionine/pharmacology , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Protein Prenylation/drug effects
2.
Mol Cell Biol ; 19(4): 2624-34, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10082528

ABSTRACT

Bcl-xL, a member of the Bcl-2 family, inhibits apoptosis, and its expression is regulated at the transcriptional level, yet nothing is known about the transcription factors specifically activating this promoter. The bcl-x promoter contains potential Ets binding sites, and we show that the transcription factor, Ets2, first identified by its sequence identity to v-ets of the E26 retrovirus, can transactivate the bcl-x promoter. Transient expression of Ets2 results in the upregulation of Bcl-xL but not of Bcl-xS, an alternatively spliced gene product which induces apoptosis. Ets2 is ubiquitously expressed at low levels in a variety of cell types and tissues but is specifically induced to abundant levels during macrophage differentiation. Since Bcl-xL is also upregulated during macrophage differentiation, we asked whether the bcl-x could be a direct downstream target gene of Ets2 in macrophages. BAC1.2F5 macrophages, which are dependent on macrophage colony-stimulating factor 1 (CSF-1) for their growth and survival, were used in these studies. We show that CSF-1 stimulation of BAC1.2F5 macrophages results in the upregulation of expression of ets2 and bcl-xL with similar kinetics of induction. In the absence of CSF-1, these macrophages undergo cell death by apoptosis, whereas constitutive expression of Ets2 rescues these cells from cell death, and bcl-xL is upregulated. These results strongly suggest a novel role of Ets2 in affecting apoptosis through its regulation of Bcl-xL transcription.


Subject(s)
Apoptosis/physiology , DNA-Binding Proteins , Macrophage Colony-Stimulating Factor/deficiency , Macrophages/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins/genetics , Repressor Proteins , Trans-Activators/genetics , Transcription Factors , Alternative Splicing , Cell Division , Macrophages/cytology , Phosphorylation , Proto-Oncogene Protein c-ets-2 , Retinoblastoma Protein/metabolism , Transcription, Genetic , Transcriptional Activation , Up-Regulation , bcl-X Protein
3.
Mol Cell Biol ; 19(1): 505-14, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9858574

ABSTRACT

Four isoforms of human fibroblast growth factor 2 (FGF-2) result from alternative initiations of translation at three CUG start codons and one AUG start codon. Here we characterize a new 34-kDa FGF-2 isoform whose expression is initiated at a fifth initiation codon. This 34-kDa FGF-2 was identified in HeLa cells by using an N-terminal directed antibody. Its initiation codon was identified by site-directed mutagenesis as being a CUG codon located at 86 nucleotides (nt) from the FGF-2 mRNA 5' end. Both in vitro translation and COS-7 cell transfection using bicistronic RNAs demonstrated that the 34-kDa FGF-2 was exclusively expressed in a cap-dependent manner. This contrasted with the expression of the other FGF-2 isoforms of 18, 22, 22.5, and 24 kDa, which is controlled by an internal ribosome entry site (IRES). Strikingly, expression of the other FGF-2 isoforms became partly cap dependent in vitro in the presence of the 5,823-nt-long 3' untranslated region of FGF-2 mRNA. Thus, the FGF-2 mRNA can be translated both by cap-dependent and IRES-driven mechanisms, the balance between these two mechanisms modulating the ratio of the different FGF-2 isoforms. The function of the new FGF-2 was also investigated. We found that the 34-kDa FGF-2, in contrast to the other isoforms, permitted NIH 3T3 cell survival in low-serum conditions. A new arginine-rich nuclear localization sequence (NLS) in the N-terminal region of the 34-kDa FGF-2 was characterized and found to be similar to the NLS of human immunodeficiency virus type 1 Rev protein. These data suggest that the function of the 34-kDa FGF-2 is mediated by nuclear targets.


Subject(s)
Codon, Initiator , Fibroblast Growth Factor 2/biosynthesis , RNA Caps , 3T3 Cells , Animals , COS Cells , Cell Survival , Fibroblast Growth Factor 2/genetics , Gene Products, rev/genetics , HeLa Cells , Humans , Mice , Nuclear Localization Signals , Peptide Chain Initiation, Translational , Protein Biosynthesis , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...