Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Aging ; 8(1): 9, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35927273

ABSTRACT

Soluble epoxide hydrolase (sEH) is upregulated in microvascular endothelium of human brain with vascular cognitive impairment (VCI). Transgenic endothelial expression of human sEH in mice (Tie2hsEH) induces endothelial dysfunction (ED), a pathogenetic mechanism of VCI. We sought to determine if endothelial upregulation of sEH is sufficient to cause cognitive impairment, and if cognitive impairment due to chronic hypoperfusion induced by unilateral common carotid artery occlusion (CCAO) is exacerbated in Tie2hsEH mice. Behavioral performance was assessed by the open field, rotarod, novel object, Morris water maze and fear conditioning tests. Cerebral blood flow and brain morphology were evaluated by MRI, and inflammatory changes investigated using immunohistochemistry and flow cytometry. We demonstrate that transgenic endothelial expression of sEH is sufficient to induce cognitive impairment, associated with leukocyte infiltration, brain atrophy and accelerated, age-dependent ventriculomegaly, identifying ED and sEH upregulation as potential underlying mechanisms and therapeutic targets for VCI.

2.
Int J Mol Sci ; 19(4)2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29677125

ABSTRACT

The space radiation environment includes helium (4He) ions that may impact brain function. As little is known about the effects of exposures to 4He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with 4He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. 4He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear conditioning tests. Taken together, the results indicate that some aspects of cognitive performance are altered in male mice exposed to 4He ions, but that the response is task-dependent. Furthermore, the sensitive doses can vary within each task in a non-linear fashion. This highlights the importance of assessing the cognitive and behavioral effects of charged particle exposure with a variety of assays and at multiple doses, given the possibility that lower doses may be more damaging due to the absence of induced compensatory mechanisms at higher doses.


Subject(s)
Cognition/radiation effects , Cognitive Dysfunction/etiology , Helium/adverse effects , Microtubule-Associated Proteins/metabolism , Animals , Apolipoproteins E/metabolism , Cognitive Dysfunction/physiopathology , Dose-Response Relationship, Radiation , Helium/therapeutic use , Hippocampus/metabolism , Hippocampus/radiation effects , Male , Memory/radiation effects , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...