Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765698

ABSTRACT

This paper deals with the viscoelastic behavior during crystallization and melting of semicrystalline polymers, with the aim of later modeling the residual stresses after processing in cases where crystallization occurs in quasi-static conditions (in additive manufacturing for example). Despite an abundant literature on polymer crystallization, the current state of scientific knowledge does not yet allow ab initio modeling. Therefore, an alternative and pragmatic way has been explored to propose a first approximation of the impact of crystallization and melting on the storage and loss moduli during crystallization-melting-crystallization cycles. An experimental approach, combining DSC, optical microscopy and oscillatory shear rheology, was used to define macroscopic parameters related to the microstructure. These parameters have been integrated into a phenomenological model. Isothermal measurements were used to describe the general framework, and crystallization at a constant cooling rate was used to evaluate the feasibility of a general approach. It can be concluded that relying solely on the crystalline fraction is inadequate to model the rheology. Instead, accounting for the microstructure at the spherulitic level could be more useful. Additionally, the results obtained from the experiments help to enhance our understanding of the correlations between crystallization kinetics and its mechanical effects.

2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835357

ABSTRACT

The well-known principle of time-temperature superposition (TTS) is of prime interest for polymers close to their glass transition. First demonstrated in the range of linear viscoelasticity, it has been more recently extended to large deformations in tension. However, shear tests were not yet addressed. The present study depicted TTS in shearing conditions and compared it to results in tensile conditions both for low and high strains for a polymethylmethacrylate (PMMA) of different molar masses. The main objectives were to enlighten the relevance of the principle of time-temperature superposition for shearing at high strain and to discuss the way shift factors should be determined. It was suggested that shift factors could be dependent on compressibility, which should be taken into account when addressing various types of complex mechanical loadings.


Subject(s)
Polymers , Vitrification , Temperature , Polymethyl Methacrylate
3.
Polymers (Basel) ; 15(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38232036

ABSTRACT

Poly(Ethylene Terephthalate) (PET) is one of the most used polymers for packaging applications. Modifications induced by service conditions and the means to make this matter circular have to be understood to really close the loop (from bottle to bottle for example). Physico-chemical properties, crystalline organisation, and mechanical behaviour of virgin PET (vPET) are compared with those of recycled PET (rPET). Using different combined experimental methods (Calorimetry, Small Angle X-ray Scattering [SAXS], Atomic Force Microscopy [AFM], Dynamic Mechanical Analysis [DMA], and uniaxial tensile test), it has been proven that even if there is no change in the crystallinity of PET, the crystallisation process shows some differences (size and number of spherulites). The potential impact of these differences on local mechanical characterisation is explored and tends to demonstrate the development of a homogeneous microstructure, leading to well-controlled and relevant local mechanical property characterisation. The main contribution of the present study is a better understanding of crystallisation of PET and recycled PET during forming processes such as thermoforming or Injection Stretch Blow Moulding (ISBM), during which elongation at the point of breaking can depend on the microstructure conditioned by the crystallisation process.

4.
Polymers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36236045

ABSTRACT

The microstructural evolutions occurring during the thermo-hydro-glycol ageing of an injection molded PA66 were studied. They were correlated to the evolutions of its mechanical properties. The aged samples were immersed in an antifreeze fluid-mainly composed of water and ethylene glycol-at varying times and temperatures. The aim was to combine an as exhaustive as possible microstructural investigation and a rigorous mechanical analysis. Consequently, the microstructure of the aged and unaged PA66 was assessed through the average molar mass, the diameter of the spherulites, the lamellae thickness, the crystallite's apparent size, a crystal perfection index, and a crystallinity index. Moreover, a core-skin approach was set up. The mechanical consequences of the microstructural changes were investigated by DMA and tensile testing. The local true strain fields were measured with a digital image correlation system. The temperatures and strain rates of the tests were chosen by referring to the time-temperature superposition principle. It is concluded that the water and ethylene glycol intake resulted in an intense plasticization, the loss of the molar mass resulted in the embrittling of the polymer, and finally, it was identified that the changes of the crystalline structure have an influence on the stiffness of PA66.

5.
Polymers (Basel) ; 12(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348679

ABSTRACT

The effect of the strain rate on damage in carbon black filled Ethylene Propylene Diene Monomer rubber (EPDM)stretched during single and multiple uniaxial loading is investigated. This has been performed by analyzing the stress-strain response, the evolution of damage by Digital Image Correlation (DIC), the associated dissipative heat source by InfraRed thermography (IR), and the chains network damage by swelling. The strain rates were selected to cover the transition from quasi-static to medium strain rate conditions. In single loading conditions, the increase of the strain rate yields in a preferential damage of the filler network while the rubber network is preserved. Such damage is accompanied by a stress softening and an adiabatic heat source rise. Conversely, increasing the strain rate in cyclic loading conditions yields in a filler network accommodation and a high self-heating whose combined effect is proposed as a possible cause of the ability of filled EPDM to limit damage by reducing cavities opening during loading, and favoring cavities closing upon unloading.

6.
Soft Matter ; 15(39): 7901-7908, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31535679

ABSTRACT

Highly porous and lightweight cellulose materials were prepared via dissolution-coagulation and different drying routes. Cellulose of three different molecular weights was dissolved in an ionic liquid/dimethyl sulfoxide mixture. Drying was performed either with supercritical CO2 resulting in "aerogels", or via freeze-drying resulting in "cryogels". The influence of cellulose molecular weight, concentration and drying method on the morphology, density, porosity and specific surface area was determined. The mechanical properties of cellulose cryogels and aerogels under uniaxial compression were studied in detail and analyzed in the view of existing models developed for porous materials. It was demonstrated that the Poisson's ratio of cellulose aerogels is not equal to zero, contrary to what is usually reported in the literature, but decreases with an increase in density. Compressive modulus and yield stress of cryogels turned out to be higher than those of aerogels taken at the same density. This was interpreted by the different morphology of the porous materials studied.

7.
Bioengineering (Basel) ; 6(2)2019 May 30.
Article in English | MEDLINE | ID: mdl-31151177

ABSTRACT

In automobile accidents, abdominal injuries are often life-threatening yet not apparent at the time of initial injury. The liver is the most commonly injured abdominal organ from this type of trauma. In contrast to current safety tests involving crash dummies, a more detailed, efficient approach to predict the risk of human injuries is computational modelling and simulations. Further, the development of accurate computational human models requires knowledge of the mechanical properties of tissues in various stress states, especially in high-impact scenarios. In this study, a polymeric split-Hopkinson pressure bar (PSHPB) was utilized to apply various high strain rates to porcine liver tissue to investigate its material behavior during high strain rate compression. Liver tissues were subjected to high strain rate impacts at 350, 550, 1000, and 1550 s-1. Tissue directional dependency was also explored by PSHPB testing along three orthogonal directions of liver at a strain rate of 350 s-1. Histology of samples from each of the three directions was performed to examine the structural properties of porcine liver. Porcine liver tissue showed an inelastic and strain rate-sensitive response at high strain rates. The liver tissue was found lacking directional dependency, which could be explained by the isotropic microstructure observed after staining and imaging. Furthermore, finite element analysis (FEA) of the PSHPB tests revealed the stress profile inside liver tissue and served as a validation of PSHPB methodology. The present findings can assist in the development of more accurate computational models of liver tissue at high-rate impact conditions allowing for understanding of subfailure and failure mechanisms.

8.
Polymers (Basel) ; 10(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30960972

ABSTRACT

Clear relationships between the semi-crystalline microstructure of injection molding polymers and their mechanical behavior are not yet totally established for all polymers. Part of this relative lack of understanding is because an unambiguous scientific approach is difficult to build up. The processing of samples promotes a microstructure which is not uniform and can be described in various ways on different scales. This introduces uncertainty in the correlations. Most completed studies were conducted on polyolefin, which exhibits an evolution of microstructure that is quite easy to observe and to correlate to mechanical properties. This paper intends to illustrate a more diffuse case. To achieve this, combined characterizations along the flow path and throughout the thickness of a plaque as well as characterizations of the local microstructure and tensile behavior of polyamide 66 are described. The microstructure was explored in terms of skin-core structure, spherulites sizes, crystallinity ratio and lamellae organization. Mechanical properties were addressed with non-monotonic tests with the use of DIC (Digital Image Correlation) to assess true behavior. The effect of humidity is also accounted for. It is demonstrated that small changes in lamellae or interlamellar amorphous phase are likely to be responsible for non-uniform mechanical properties, whereas more macroscopic levels (skin core structure, spherulites level of crystallinity ratio) appeared to be irrelevant levels of description. Consequently, the usual simplified analyses based on optical microscopy and differential scanning calorimetry (DSC) can be inefficient in improving knowledge in that field.

SELECTION OF CITATIONS
SEARCH DETAIL
...