Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 93(5): 1901-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18319307

ABSTRACT

CONTEXT: Steroid 21-hydroxylase deficiency is the most common enzymatic defect causing congenital adrenal hyperplasia with good genotype/phenotype relationships for common mutations. To determine the severity of rare mutations is essential for genetic counseling and better understanding of the structure-function of the cytochrome P450c21. OBJECTIVE: The p.H62L mutation was the most frequent of 60 new mutations detected in 2900 steroid 21-hydroxylase deficiency patients, either isolated or associated on the same allele with a mild mutation (p.P453S, p.P30L, or partial promoter). Because phenotypes seemed to differ between patients with isolated or associated p.H62L, a detailed phenotype description and functional studies were performed. RESULTS: Regarding phenotype, patients with isolated p.H62L had a nonclassical form, whereas patients with the association p.H62L + mild mutation had a simple virilizing form. Functional studies showed that p.H62L reduced the conversion of the two substrates, progesterone and 17-hydroxyprogesterone, in the same way as the mild p.P453S; the association p.H62L + p.P453S decreased enzymatic activity more strongly while conserving residual activity at a level intermediate between p.P453S and p.I172N. This suggested that p.H62L was a mild mutation, whereas a synergistic effect occurred when it was associated. Analysis of p.H62L in a three-dimensional model structure of the CYP21 protein explained the observed in vitro effects, the H62 being located in a domain implied in membrane anchoring. CONCLUSION: According to phenotype and functional studies, p.H62L is a mild mutation, responsible for a more severe phenotype when associated with another mild mutation. These data are important for patient management and genetic counseling.


Subject(s)
Adrenal Hyperplasia, Congenital/genetics , Mutation , Steroid 21-Hydroxylase/genetics , Adolescent , Adult , Amino Acid Sequence , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Molecular Sequence Data , Steroid 21-Hydroxylase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...