Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Environ Health Res ; : 1-13, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899970

ABSTRACT

This study aimed to determine a typical profile of elite breath-hold divers (BHDs), in relation to loss of consciousness (LOC) and episodic memory. Forty-four BHDs were evaluated during a world championship with anthropometric and physiological measurements, psychosociological factors and memory assessment. Seventy-five percent of the BHDs had at least one LOC with the predominance being men (p < 0.05). Thirty six percent of BHDs presented a low-risk profile and 64% a high-risk profile with no particular psychological pattern. Stepwise multiple linear regression showed that body fat, years of BH practice, age and forced vital capacity explained a significant amount of the variance of LOC for all BHDs (F(4,39) = 16.03, p < 0.001, R2 = 0.622, R2Adjusted = 0.583). No correlation was found between resting physiological parameters and their training or depth performances. In conclusion, anthropometric data, pulmonary factors and breath-holding experience were predictive of LOC in elite BHDs, with men taking more risks. BHDs episodic memory was not impaired.

2.
J Med Imaging (Bellingham) ; 11(1): 014003, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38173654

ABSTRACT

Purpose: The hippocampus is organized in subfields (HSF) involved in learning and memory processes and widely implicated in pathologies at different ages of life, from neonatal hypoxia to temporal lobe epilepsy or Alzheimer's disease. Getting a highly accurate and robust delineation of sub-millimetric regions such as HSF to investigate anatomo-functional hypotheses is a challenge. One of the main difficulties encountered by those methodologies is related to the small size and anatomical variability of HSF, resulting in the scarcity of manual data labeling. Recently introduced, capsule networks solve analogous problems in medical imaging, providing deep learning architectures with rotational equivariance. Nonetheless, capsule networks are still two-dimensional and unassessed for the segmentation of HSF. Approach: We released a public 3D Capsule Network (3D-AGSCaps, https://github.com/clementpoiret/3D-AGSCaps) and compared it to equivalent architectures using classical convolutions on the automatic segmentation of HSF on small and atypical datasets (incomplete hippocampal inversion, IHI). We tested 3D-AGSCaps on three datasets with manually labeled hippocampi. Results: Our main results were: (1) 3D-AGSCaps produced segmentations with a better Dice Coefficient compared to CNNs on rotated hippocampi (p=0.004, cohen's d=0.179); (2) on typical subjects, 3D-AGSCaps produced segmentations with a Dice coefficient similar to CNNs while having 15 times fewer parameters (2.285M versus 35.069M). This may greatly facilitate the study of atypical subjects, including healthy and pathological cases like those presenting an IHI. Conclusion: We expect our newly introduced 3D-AGSCaps to allow a more accurate and fully automated segmentation on atypical populations, small datasets, as well as on and large cohorts where manual segmentations are nearly intractable.

3.
Front Neuroinform ; 17: 1130845, 2023.
Article in English | MEDLINE | ID: mdl-37396459

ABSTRACT

The hippocampal subfields, pivotal to episodic memory, are distinct both in terms of cyto- and myeloarchitectony. Studying the structure of hippocampal subfields in vivo is crucial to understand volumetric trajectories across the lifespan, from the emergence of episodic memory during early childhood to memory impairments found in older adults. However, segmenting hippocampal subfields on conventional MRI sequences is challenging because of their small size. Furthermore, there is to date no unified segmentation protocol for the hippocampal subfields, which limits comparisons between studies. Therefore, we introduced a novel segmentation tool called HSF short for hippocampal segmentation factory, which leverages an end-to-end deep learning pipeline. First, we validated HSF against currently used tools (ASHS, HIPS, and HippUnfold). Then, we used HSF on 3,750 subjects from the HCP development, young adults, and aging datasets to study the effect of age and sex on hippocampal subfields volumes. Firstly, we showed HSF to be closer to manual segmentation than other currently used tools (p < 0.001), regarding the Dice Coefficient, Hausdorff Distance, and Volumetric Similarity. Then, we showed differential maturation and aging across subfields, with the dentate gyrus being the most affected by age. We also found faster growth and decay in men than in women for most hippocampal subfields. Thus, while we introduced a new, fast and robust end-to-end segmentation tool, our neuroanatomical results concerning the lifespan trajectories of the hippocampal subfields reconcile previous conflicting results.

4.
Cereb Cortex Commun ; 3(1): tgac004, 2022.
Article in English | MEDLINE | ID: mdl-35261977

ABSTRACT

The structure-function relationship between white matter microstructure and episodic memory (EM) has been poorly studied in the developing brain, particularly in early childhood. Previous studies in adolescents and adults have shown that episodic memory recall is associated with prefrontal-limbic white matter microstructure. It is unknown whether this association is also observed during early ontogeny. Here, we investigated the association between prefrontal-limbic tract microstructure and EM performance in a cross-sectional sample of children aged 4 to 12 years. We used a multivariate partial least squares correlation approach to extract tract-specific latent variables representing shared information between age and diffusion parameters describing tract microstructure. Individual projections onto these latent variables describe patterns of interindividual differences in tract maturation that can be interpreted as scores of white matter tract microstructural maturity. Using these estimates of microstructural maturity, we showed that maturity scores of the uncinate fasciculus and dorsal cingulum bundle correlated with distinct measures of EM recall. Furthermore, the association between tract maturity scores and EM recall was comparable between younger and older children. Our results provide new evidence on the relation between white matter maturity and EM performance during development.

5.
Hippocampus ; 31(11): 1202-1214, 2021 11.
Article in English | MEDLINE | ID: mdl-34448509

ABSTRACT

The ability to keep distinct memories of similar events is underpinned by a type of neural computation called pattern separation (PS). Children typically report coarse-grained memories narratives lacking specificity and detail. This lack of memory specificity is illustrative of an immature or impaired PS. Despite its importance for the ontogeny of memory, data regarding the maturation of PS during childhood is still scarce. PS is known to rely on the hippocampus, particularly on hippocampal subfields DG and CA3. In this study, we used a memory discrimination task, a behavioral proxy for PS, and manually segmented hippocampal subfields volumes in the hippocampal body in a cohort of 26 children aged from 5 to 12 years. We examined the association between subfields volumes and memory discrimination performance. The main results were: (1) we showed age-related differences of memory discrimination suggesting a continuous increase of memory performance during early to late childhood. (2) We evidenced distinct associations between age and the volumes of hippocampal subfield, suggesting distinct developmental trajectories. (3) We showed a relationship between memory discrimination performance and the volumes of CA3 and subiculum. Our results further confirm the role of CA3 in memory discrimination, and suggest to scrutinize more closely the role of the subiculum. Overall, we showed that hippocampal subfields contribute distinctively to PS during development.


Subject(s)
Hippocampus , Magnetic Resonance Imaging , Child , Child, Preschool , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods
6.
Handb Clin Neurol ; 173: 201-213, 2020.
Article in English | MEDLINE | ID: mdl-32958174

ABSTRACT

During the past decades, abundant behavioral, clinical, and neuroimaging data have shown several memory systems in the brain. A memory system is a type of memory that processes a particular type of information, using specific mechanisms, with distinct neural correlates. What we call memory is therefore not a unitary capacity but a collection of distinct systems. From a developmental perspective, each memory system has its own developmental course. This explains the heterogeneity of children's mnemonic competencies: for example, 3-year-olds learn many new words and concepts every day but have trouble recalling in detail an event that happened the week before. In this chapter, we sum up major findings regarding the development from infancy to early adulthood of the main memory systems. Specifically, we report recent data regarding the development of declarative memory (i.e., episodic and semantic memory), and the relationship between the maturation of their neural correlates and the phenomena of infantile and childhood amnesia. We conclude by indicating some of the possible avenues for future research.


Subject(s)
Amnesia , Memory , Brain/diagnostic imaging , Child, Preschool , Humans , Learning , Neuroimaging
7.
Front Neuroanat ; 12: 98, 2018.
Article in English | MEDLINE | ID: mdl-30498435

ABSTRACT

The hippocampus and the adjacent perirhinal, entorhinal, temporopolar, and parahippocampal cortices are interconnected in a hierarchical MTL system crucial for memory processes. A probabilistic description of the anatomical location and spatial variability of MTL cortices in the child and adolescent brain would help to assess structure-function relationships. The rhinal sulcus (RS) and the collateral sulcus (CS) that border MTL cortices and influence their morphology have never been described in these populations. In this study, we identified the aforementioned structures on magnetic resonance images of 38 healthy subjects aged 7-17 years old. Relative to sulcal morphometry in the MTL, we showed RS-CS conformation is an additional factor of variability in the MTL that is not explained by other variables such as age, sex and brain volume; with an innovative method using permutation testing of the extrema of structures of interest, we showed that RS-SC conformation was not associated with differences of location of MTL sulci. Relative to probabilistic maps, we offered for the first time a systematic mapping of MTL structures in children and adolescent, mapping all the structures of the MTL system while taking sulcal morphology into account. Our results, with the probabilistic maps described here being freely available for download, will help to understand the anatomy of this region and help functional and clinical studies to accurately test structure-function hypotheses in the MTL during development. Free access to MTL pediatric atlas: http://neurovault.org/collections/2381/.

SELECTION OF CITATIONS
SEARCH DETAIL
...