Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci Biotechnol ; 6(1): 5, 2015.
Article in English | MEDLINE | ID: mdl-25785187

ABSTRACT

BACKGROUND: The filamentous fungus Talaromyces versatilis is known to improve the metabolizable energy of wheat-based poultry diets thanks to its ability to produce a pool of CAZymes and particularly endo-ß(1,4)-xylanases. In order to appreciate their in vivo mode of action, the supplementation effect of two of its xylanases, XynD and XynB from families GH10 and GH11 respectively, have been evaluated on two different wheat cultivars Caphorn and Isengrain, which were chosen amongst 6 varieties for their difference in non starch polysaccharides content and arabinoxylan composition. RESULTS: Polysaccharides digestion was followed during 6 h along the digestive tract using the TNO gastrointestinal model-1, to mimic monogastric metabolism. Polysaccharide degradation appeared to occur mainly at the jejunal level and was higher with Isengrain than with Caphorn. For both cultivars, XynD and XynB supplementation increased notably the amount of reducing end sugars into the jejuno-ileal dialysates, which has been confirmed by a valuable increase of the soluble glucose into the jejunal dialysates. CONCLUSIONS: The amounts of arabinose and xylose into the dialysates and ileal deliveries increased consequently mainly for Caphorn, suggesting that XynD and XynB supplementation in wheat-based diet could alleviate the anti-nutritional effects of arabinoxylans by limiting the physical entrapment of starch and could increase the available metabolizable energy.

2.
FEBS Lett ; 587(18): 3002-7, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23891620

ABSTRACT

The activity of breast milk BSDL was assayed with or without phospholipids as extra-intestinal effector candidates. Phosphatidic acid, lysophosphatidic acid and platelet activating factor but not phosphatidylcholine and lysophosphatidylcholine stimulated BSDL activity at least as efficiently as taurocholate. The apparent dissociation constants of PA and LPA at saturating concentrations of three different substrates were between 0.1 and 13.4 µM and that of PAF was below or equal to 200 pM. Kinetic data suggested the existence of at least one binding site for each of these effectors. PA, LPA and PAF are likely extra-intestinal modulators of BSDL activity.


Subject(s)
Lipase/chemistry , Lysophospholipids/chemistry , Milk, Human/enzymology , Platelet Activating Factor/chemistry , Binding Sites , Enzyme Activation , Enzyme Assays , Female , Humans , Kinetics , Lysophosphatidylcholines/chemistry , Milk, Human/chemistry , Phosphatidic Acids/chemistry , Phosphatidylcholines/chemistry , Protein Binding , Taurocholic Acid/chemistry
3.
Br J Nutr ; 106(2): 264-73, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21554815

ABSTRACT

The digestion of polysaccharides from the wheat cultivars Caphorn and Isengrain was investigated, and the efficiency of an enzyme preparation was tested using the TNO gastrointestinal model (TIM-1). The apparent digestibility (AD) of carbohydrates was determined based on the measurement of organic matter (OM), total monosaccharides, reducing ends (RE) and end products (EP: glucose, maltose and xylobiose). The AD of the OM from Caphorn and Isengrain measured using caecectomised cockerels did not differ from that measured using TIM-1: 72.0 (SD 2.6) v. 70.6 (SD 0.6) % for Caphorn (P = 0.580) and 73.0 (SD 2.3) v. 71.1 (SD 1.9) % for Isengrain (P = 0.252). After the 6 h TIM-1 digestion, 41.4-58.9 % of the OM, RE and EP were recovered from the jejunal compartment and 18.3-27.1 % from the ileal compartment, while ileal deliveries and digestive residues constituted the remainder. A commercial enzyme cocktail tested at 0.2 µl/g of wheat improved TIM-1 digestibility of Caphorn and Isengrain polysaccharides: 3.9 % (P = 0.0203) and 3.4 % (P = 0.0058) based on the OM; 9.7 % (P < 0.0001) and 3.1 % (P = 0.031) based on the total glucose; 47.2 % (P < 0.0001) and 14.2 % (P = 0.0004) based on the RE, respectively. The enzyme cocktail improved the release of the EP for Caphorn (3.8 %, P = 0.008) but not for Isengrain ( − 0.8 %, P = 0.561). The higher efficiency of the enzyme supplementation on the digestion of Caphorn polysaccharides compared with Isengrain seems to be linked to the higher soluble carbohydrate contents and/or less ramified arabinoxylan of Caphorn.


Subject(s)
Animal Nutritional Physiological Phenomena/drug effects , Diet , Dietary Supplements , Digestion/drug effects , Enzymes/pharmacology , Polysaccharides/metabolism , Triticum/chemistry , Animal Feed , Animals , Chickens , Glucose/metabolism , Ileum/metabolism , Jejunum/metabolism , Male , Models, Biological , Species Specificity , Triticum/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...