Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37110312

ABSTRACT

The geographical origin of a major present-day phylogenetic group (A branch WNA; A.Br.WNA) of American Bacillus anthracis is controversial. One hypothesis postulated that the anthrax pathogen reached North America via a then-existing land bridge from northeastern Asia thousands of years ago. A competing hypothesis suggested that B. anthracis was introduced to America a couple of hundred years ago, related to European colonization. The latter view is strongly supported by genomic analysis of a group of French B. anthracis isolates that are phylogenetically closely related to the North American strains of the A branch A.Br.WNA clade. In addition, three West African strains also belong to this relationship group. Recently, we have added a Spanish strain to these close relatives of the WNA lineage of American B. anthracis. Nevertheless, the diversity of Spanish B. anthracis remains largely unexplored, and phylogenetic links to European or American relatives are not well resolved. Here, we genome sequenced and characterized 29 new B. anthracis isolates (yielding 18 unique genotypes) from outbreaks in west central and central Spain in 2021. Applying comparative chromosomal analysis, we placed the chromosomes of these isolates within the established phylogeny of the A.Br.008/009 (A.Br.TEA) canonical SNP group. From this analysis, a new sub-clade, named A.Br.11/ESPc, emerged that constitutes a sister group of American A.Br.WNA.

2.
Viruses ; 14(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35891525

ABSTRACT

This study described the clinical, virological, and serological responses of immunologically naïve and vaccinated horses to African horse sickness virus (AHSV) serotype 9. Naïve horses developed a clinical picture resembling the cardiac form of African horse sickness. This was characterized by inappetence, reduced activity, and hyperthermia leading to lethargy and immobility-recumbency by days 9-10 post-infection, an end-point criteria for euthanasia. After challenge, unvaccinated horses were viremic from days 3 or 4 post-infection till euthanasia, as detected by serogroup-specific (GS) real time RT-PCR (rRT-PCR) and virus isolation. Virus isolation, antigen ELISA, and GS-rRT-PCR also demonstrated high sensitivity in the post-mortem detection of the pathogen. After infection, serogroup-specific VP7 antibodies were undetectable by blocking ELISA (b-ELISA) in 2 out of 3 unvaccinated horses during the course of the disease (9-10 dpi). Vaccinated horses did not show significant side effects post-vaccination and were largely asymptomatic after the AHSV-9 challenge. VP7-specific antibodies could not be detected by the b-ELISA until day 21 and day 30 post-inoculation, respectively. Virus neutralizing antibody titres were low or even undetectable for specific serotypes in the vaccinated horses. Virus isolation and GS-rRT-PCR detected the presence of AHSV vaccine strains genomes and infectious vaccine virus after vaccination and challenge. This study established an experimental infection model of AHSV-9 in horses and characterized the main clinical, virological, and immunological parameters in both immunologically naïve and vaccinated horses using standardized bio-assays.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Viral Vaccines , African Horse Sickness/prevention & control , Animals , Antibodies, Viral , Horses , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL
...