Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 29(8): 266, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37505323

ABSTRACT

CONTEXT: The dye-sensitized solar cell is a technology unique in its light conversion properties as it operates with record efficiencies in diffused light conditions. The choice of the appropriate sensitizer is one of the important strategies to improve photovoltaic performance of DSSC devices. This theoretical study mainly aims to determine the impact of the π-spacer on the geometric and optoelectronic parameters of sensitizer dyes. For that, we have chosen six organic dyes of Donor-π-Acceptor structure based on triphenylamine unit as electron donor, cyanoacrylic acid as electron acceptor with various π-bridges. The results indicated that the doping process modify dihedral angles and electronic properties by enhancing the planarity and decreasing the gap energy. We have examined the optoelectronic and photovoltaic properties of studied triphenylamine based-dyes. Introducing thiophene and furan as π-spacer groups in D6 dye can effectively decrease the gap energy (Egap = 2.21 eV), broaden the absorption range (λmax = 671.19 nm), and promote the light-harvesting properties. The D2 dye based on two pyrrole units presents an improved electron injection driving force (ΔGinject = - 2.269 eV) and regeneration driving force corresponding to better charge separation. The π-bridge groups can efficiently tune the optoelectronic and photovoltaic properties of sensitizers, which contribute to the efficiency of solar cells. METHODS: The geometrical and electronic properties of all systems were studied by the DFT method using the correlation exchange functional B3LYP combined with 6-31G(d, p) basis set. On the other hand, the maximum absorption wavelengths λmax and the corresponding oscillator strengths were calculated using the hybrid functional BHandHLYP and 6-31+G(d) basis set. The solvent tetrahydrofuran (THF) are used to study the effect of the solvent, using the "Conductor-Polarizable Continuum" (C-PCM) model. All calculations were performed using Gaussian 09 program.

2.
Materials (Basel) ; 16(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837251

ABSTRACT

The efficiency of the newly designed dye-sensitized solar cells (DSSCs) containing triphenylamine, diphenylamine (TPA), phenothiazine, and phenoxazine as donors and triazine, phenyl with D1-D2-π-linker-π-(A)2 architecture has been investigated using density functional theory (DFT) and time-dependent (TD-DFT) methods. These methods were used to investigate the geometrical structures, electronic properties, absorption, photovoltaic properties, and chemical reactivity. Furthermore, the calculated results indicate that different architectures can modify the energy levels of HOMO and LUMO and reduce the energy gap. The absorption undergoes a redshift displacement. This work aims at calculating the structural geometries and the electronic and optical properties of the designed dyes. Furthermore, the dye adsorption characteristics, such as the optoelectronic properties and the adsorption energies in the TiO2 clusters, were calculated with counterpoise correction and discussed.

3.
J Mol Model ; 27(5): 122, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33822262

ABSTRACT

In this article, we studied a series of dye-sensitized solar cells (DSSCs) type Donor-π-Acceptor involving carbazole as donors and cyanoacrylic acid as acceptors of the electrons. These cells are linked by different π-spacer unit's, with the aim to develop new organic dyes with high-performance optoelectronic properties. Different units have been introduced in the π-bridge in order to investigate their effects on the structural and optoelectronic properties of the studied compounds, as well as their adsorbed compounds-titanium dioxide (TiO2) semi-conductor. We evaluated and assessed the important relevant parameters that influence the performance of photovoltaic cell to measure their involvement in the short-circuit photocurrent density (Jsc). Using Density Functional Theory (DFT) and Time-Dependent-BHandHLYP, the geometrical and optoelectronics properties have been predicted theoretically. The results obtained indicate that introducing the oxazole (S5) and thiazole (S6) molecules in the π-spacer have significant impact on the geometric properties for D5-D6 dyes. This results in the fact that dye D5 has a planar structure. Also, the insertion of the thiophene, oxazole and thiazole units improves the energies of the HOMO and LUMO molecular orbitals of D1, D5, and D6 dyes. Moreover, these results show the ability of electron transfer and regeneration from the studied sensitizers (D1-D6). Also, it can be noted that the application of the pyrrole group in the π-spacer moiety of the dye (D2) improves the electron's transfer performance with a lower regeneration motive force ΔGreg, a more negative injection driving forces (ΔGinject), and a higher values of open circuit-voltage (Voc).

4.
J Mol Model ; 25(4): 92, 2019 Mar 09.
Article in English | MEDLINE | ID: mdl-30852666

ABSTRACT

In this paper, we present a series of sensitizers to shed light on the influence of π-spacers on the performance of dye-sensitized solar cells. We have accurately calculated key properties in energy conversion, including sunlight absorption, electron injection, electron/hole reorganization energy, ionization potential (IP) and electronic affinity (EA). We chose a series of donor-π-acceptor dyes based on methyl-indole-carbazole as the electron donor group and cyano-acrylic acid as an acceptor with various π-conjugated systems. The results obtained show that, with incorporation of the thieno(3,4-b)pyrazine in the two π-spacer parts, D4 may be the best candidate among the dyes studied, due to its many advantages such as low gap energy, red-shift absorption spectra, large ΔGInj, low hole/electron reorganization energies, low IP and high EA, which indicate its better optoelectronic properties, which present more balanced transport rates and provide good injection ability. Graphical abstract Absorption spectra in gaz phase, obtained by CAM-B3LYP/6-31G(d,p) with solar spectrum.

5.
Chem Cent J ; 10: 67, 2016.
Article in English | MEDLINE | ID: mdl-27843488

ABSTRACT

BACKGROUND: Novel six organic donor-π-acceptor molecules (D-π-A) used for Bulk Heterojunction organic solar cells (BHJ), based on thienopyrazine were studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) approaches, to shed light on how the π-conjugation order influence the performance of the solar cells. The electron acceptor group was 2-cyanoacrylic for all compounds, whereas the electron donor unit was varied and the influence was investigated. METHODS: The TD-DFT method, combined with a hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) in conjunction with a polarizable continuum model of salvation (PCM) together with a 6-31G(d,p) basis set, was used to predict the excitation energies, the absorption and the emission spectra of all molecules. RESULTS: The trend of the calculated HOMO-LUMO gaps nicely compares with the spectral data. In addition, the estimated values of the open-circuit photovoltage (Voc) for these compounds were presented in two cases/PC60BM and/PC71BM. CONCLUSION: The study of structural, electronics and optical properties for these compounds could help to design more efficient functional photovoltaic organic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...