Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 25(6): 814-24, 2015 06.
Article in English | MEDLINE | ID: mdl-25963125

ABSTRACT

Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Human , Genome, Mitochondrial/genetics , Neoplasms/genetics , Amino Acid Sequence , Cell Line, Tumor , Cell Nucleus/genetics , Chromosomes/genetics , DNA Copy Number Variations , DNA End-Joining Repair , DNA Replication , HeLa Cells , Humans , In Situ Hybridization, Fluorescence , Mitochondria/genetics , Molecular Sequence Data , Reproducibility of Results , Sequence Analysis, DNA
2.
Mol Cancer Ther ; 9(2): 336-46, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20124447

ABSTRACT

Loss-of-function mutations in the nuclear factor erythroid-2-related factor 2 (Nrf2) inhibitor Kelch-like ECH-associated protein 1 (Keap1) result in increased Nrf2 activity in non-small cell lung cancer and confer therapeutic resistance. We detected point mutations in Keap1 gene, leading to nonconservative amino acid substitutions in prostate cancer cells. We found novel transcriptional and posttranscriptional mechanisms of Keap1 inactivation, such as promoter CpG island hypermethylation and aberrant splicing of Keap1, in DU-145 cells. Very low levels of Keap1 mRNA were detected in DU-145 cells, which significantly increased by treatment with DNA methyltransferase inhibitor 5-aza-deoxycytidine. The loss of Keap1 function led to an enhanced activity of Nrf2 and its downstream electrophile/drug detoxification pathway. Inhibition of Nrf2 expression in DU-145 cells by RNA interference attenuated the expression of glutathione, thioredoxin, and the drug efflux pathways involved in counteracting electrophiles, oxidative stress, and detoxification of a broad spectrum of drugs. DU-145 cells constitutively expressing Nrf2 short hairpin RNA had lower levels of total glutathione and higher levels of intracellular reactive oxygen species. Attenuation of Nrf2 function in DU-145 cells enhanced sensitivity to chemotherapeutic drugs and radiation-induced cell death. In addition, inhibition of Nrf2 greatly suppressed in vitro and in vivo tumor growth of DU-145 prostate cancer cells. Thus, targeting the Nrf2 pathway in prostate cancer cells may provide a novel strategy to enhance chemotherapy and radiotherapy responsiveness and ameliorate the growth and tumorigenicity, leading to improved clinical outcomes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/pathology , Prostatic Neoplasms/embryology , Animals , DNA Methylation , Humans , Kelch-Like ECH-Associated Protein 1 , Male , Mice , Mice, Nude , Mutation , NF-E2-Related Factor 2/metabolism , Neoplasms/metabolism , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...