Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 51(5): 850-857, 2019 05.
Article in English | MEDLINE | ID: mdl-30629048

ABSTRACT

INTRODUCTION: Pediatric heart transplant (HTx) recipients have reduced exercise capacity typically two-thirds of predicted values, the mechanisms of which are not fully understood. We sought to assess the cardiorespiratory responses to progressive exercise in HTx relative to controls matched for age, sex, body size, and work rate. METHODS: Fourteen HTx recipients and matched controls underwent exercise stress echocardiography on a semisupine cycle ergometer. Hemodynamics, left ventricular (LV) dimensions, and volumes were obtained and indexed to body surface area. Oxygen consumption (V˙O2) was measured, and arteriovenous oxygen difference was estimated using the Fick Principle. RESULTS: At rest, LV mass index (P = 0.03) and volumes (P < 0.001) were significantly smaller in HTx, whereas wall thickness (P < 0.01) and LV mass-to-volume ratio (P = 0.01) were greater. Differences in LV dimensions and stroke volume persisted throughout exercise, but the pattern of response was similar between groups as HR increased. As exercise progressed, heart rate and cardiac index increased to a lesser extent in HTx. Despite this, V˙O2 was similar (P = 0.82) at equivalent work rates as HTx had a greater change in arteriovenous oxygen difference (P < 0.01). CONCLUSIONS: When matched for work rate, HTx had similar metabolic responses to controls despite having smaller LV chambers and an attenuated increase in hemodynamic responses. These findings suggest that HTx may increase peripheral O2 extraction as a compensatory mechanism in response to reduced cardiovascular function.


Subject(s)
Exercise/physiology , Heart Transplantation , Oxygen Consumption , Adolescent , Case-Control Studies , Child , Echocardiography , Exercise Test , Female , Heart Rate , Hemodynamics , Humans , Male , Retrospective Studies , Stroke Volume , Transplant Recipients , Ventricular Function, Left
2.
Physiol Rep ; 6(15): e13816, 2018 08.
Article in English | MEDLINE | ID: mdl-30084226

ABSTRACT

Whether the large lungs of swimmers result from intensive training or genetic endowment has been widely debated. Given that peak lung growth velocities occur during puberty, this study examined if competitive swimming during puberty affected lung growth. Eleven- to fourteen-year-old healthy female competitive swimmers and controls were assessed before (PRE) and after (POST) one swimming season (7.4 ± 0.5 months). Pulmonary function testing included lung volumes, spirometry, diffusion capacity (DL,CO ), and maximal inspiratory (PIMAX ) and expiratory (PEMAX ) pressures. Ventilatory constraints, including end-expiratory lung volume, expiratory flow limitation, and utilization of ventilatory capacity, were assessed during an incremental cycling test. Swimmers (n = 11) and controls (n = 10) were of similar age, size, and sexual maturity (P > 0.05). However, swimmers compared to controls had a greater total lung capacity (PRE 4.73 ± 0.73 vs. 3.93 ± 0.46, POST 5.08 ± 0.68 vs. 4.19 ± 0.64 L; P < 0.01), peak expiratory flow (PRE 6.48 ± 0.92 vs. 5.70 ± 0.86, POST 6.97 ± 0.84 vs. 6.00 ± 0.77 L·s-1 ; P = 0.03), and PEMAX (P < 0.001). Although DL,CO was greater in swimmers (P = 0.01), differences were attenuated when expressed relative to alveolar volume (PRE 5.14 ± 0.60 vs. 5.44 ± 0.44, POST 4.91 ± 0.56 vs. 5.16 ± 0.38 mL min-1  mmHg-1  L-1 ; P = 0.20). The groups achieved a similar maximal oxygen uptake (P = 0.32), and ventilatory constraints experienced were not different (P > 0.05). Changes over time were not different between groups (P > 0.05). At the initial measurement, pubertal female swimmers had greater lung size, expiratory flows, and indices of respiratory muscle strength, but similar ventilatory constraints while cycling. One competitive swimming season did not further accentuate this enhanced lung size and function or alter ventilatory mechanics, suggesting that competitive swimming during puberty did not affect lung growth.


Subject(s)
Lung/growth & development , Swimming/physiology , Adolescent , Aging/physiology , Anthropometry/methods , Case-Control Studies , Child , Exercise Test/methods , Female , Humans , Lung/physiology , Lung Volume Measurements , Puberty/physiology , Respiratory Function Tests , Respiratory Mechanics/physiology , Total Lung Capacity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...