Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Transl Res ; 16(6): 1267-1275, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37278928

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a relatively common genetic heart disease characterised by myocardial hypertrophy. HCM can cause outflow tract obstruction, sudden cardiac death and heart failure, but severity is highly variable. In this exploratory cross-sectional study, circulating acylcarnitines were assessed as potential biomarkers in 124 MYBPC3 founder variant carriers (59 with severe HCM, 26 with mild HCM and 39 phenotype-negative [G + P-]). Elastic net logistic regression identified eight acylcarnitines associated with HCM severity. C3, C4, C6-DC, C8:1, C16, C18 and C18:2 were significantly increased in severe HCM compared to G + P-, and C3, C6-DC, C8:1 and C18 in mild HCM compared to G + P-. In multivariable linear regression, C6-DC and C8:1 correlated to log-transformed maximum wall thickness (coefficient 5.01, p = 0.005 and coefficient 0.803, p = 0.007, respectively), and C6-DC to log-transformed ejection fraction (coefficient -2.50, p = 0.004). Acylcarnitines seem promising biomarkers for HCM severity, however prospective studies are required to determine their prognostic value.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cross-Sectional Studies , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Phenotype , Biomarkers , Mutation
2.
Neth Heart J ; 29(6): 318-329, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33532905

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by truncating variants in the MYBPC3 gene. HCM is an important cause of sudden cardiac death; however, overall prognosis is good and penetrance in genotype-positive individuals is incomplete. The underlying mechanisms are poorly understood and risk stratification remains limited. AIM: To create a nationwide cohort of carriers of truncating MYBPC3 variants for identification of predictive biomarkers for HCM development and progression. METHODS: In the multicentre, observational BIO FOr CARe (Identification of BIOmarkers of hypertrophic cardiomyopathy development and progression in Dutch MYBPC3 FOunder variant CARriers) cohort, carriers of the c.2373dupG, c.2827C > T, c.2864_2865delCT and c.3776delA MYBPC3 variants are included and prospectively undergo longitudinal blood collection. Clinical data are collected from first presentation onwards. The primary outcome constitutes a composite endpoint of HCM progression (maximum wall thickness ≥ 20 mm, septal reduction therapy, heart failure occurrence, sustained ventricular arrhythmia and sudden cardiac death). RESULTS: So far, 250 subjects (median age 54.9 years (interquartile range 43.3, 66.6), 54.8% male) have been included. HCM was diagnosed in 169 subjects and dilated cardiomyopathy in 4. The primary outcome was met in 115 subjects. Blood samples were collected from 131 subjects. CONCLUSION: BIO FOr CARe is a genetically homogeneous, phenotypically heterogeneous cohort incorporating a clinical data registry and longitudinal blood collection. This provides a unique opportunity to study biomarkers for HCM development and prognosis. The established infrastructure can be extended to study other genetic variants. Other centres are invited to join our consortium.

3.
Neth Heart J ; 20(5): 219-28, 2012 May.
Article in English | MEDLINE | ID: mdl-22215463

ABSTRACT

BACKGROUND: Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We describe new families carrying the p.S13F or p.N342D DES mutations, the cardiac phenotype of all carriers, and the founder effects. METHODS: We collected the clinical details of all carriers of p.S13F or p.N342D. The founder effects were studied using genealogy and haplotype analysis. RESULTS: We identified three new index patients carrying the p.S13F mutation and two new families carrying the p.N342D mutation. In total, we summarised the clinical details of 39 p.S13F carriers (eight index patients) and of 21 p.N342D carriers (three index patients). The cardiac phenotype of p.S13F carriers is fully penetrant and severe, characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Although muscle weakness is a prominent and presenting symptom in p.N342D carriers, their cardiac phenotype is similar to that of p.S13F carriers. The founder effects of p.S13F and p.N342D were demonstrated by genealogy and haplotype analysis. CONCLUSION: DRM may occur as an apparently isolated cardiological disorder. The cardiac phenotypes of the DES founder mutations p.S13F and p.N342D are characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement.

4.
Clin Genet ; 79(5): 459-67, 2011 May.
Article in English | MEDLINE | ID: mdl-20573160

ABSTRACT

Identifying a mutation in a heterogeneous disease such as inherited cardiomyopathy is a challenge because classical methods, like linkage analysis, can often not be applied as there are too few meioses between affected individuals. However, if affected individuals share the same causal mutation, they will also share a genomic region surrounding it. High-density genotyping arrays are able to identify such regions shared among affected individuals. We hypothesize that the longest shared haplotype is most likely to contain the disease-causing mutation. We applied this method to two pedigrees: one with arrhythmogenic right ventricular cardiomyopathy (ARVC) and one with dilated cardiomyopathy (DCM), using high-density genome-wide SNP arrays. In the ARVC pedigree, the largest haplotype was on chromosome 12 and contained a causative PKP2 mutation. In the DCM pedigree, a causative MYH7 mutation was present on a large shared haplotype on chromosome 14. We calculated that a pedigree containing at least seven meioses has a high chance of correctly detecting the mutation-containing haplotype as the largest. Our data show that haplotype sharing analysis can assist in identifying causative genes in families with low penetrance Mendelian diseases, in which standard tools cannot be used due to lack of sufficient pedigree information.


Subject(s)
Cardiomyopathies/genetics , Haplotypes , Cardiomyopathy, Dilated/genetics , Chromosome Mapping , Genotype , Humans , Mutation , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...