Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Dis Model Mech ; 16(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37260288

ABSTRACT

The nuclear receptor NR2F1 acts as a strong transcriptional regulator in embryonic and postnatal neural cells. In humans, mutations in the NR2F1 gene cause Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS), a rare neurodevelopmental disorder characterized by multiple clinical features including vision impairment, intellectual disability and autistic traits. In this study, we identified, by genome-wide and in silico analyses, a set of nuclear-encoded mitochondrial genes as potential genomic targets under direct NR2F1 transcriptional control in neurons. By combining mouse genetic, neuroanatomical and imaging approaches, we demonstrated that conditional NR2F1 loss of function within the adult mouse hippocampal neurogenic niche results in a reduced mitochondrial mass associated with mitochondrial fragmentation and downregulation of key mitochondrial proteins in newborn neurons, the genesis, survival and functional integration of which are impaired. Importantly, we also found dysregulation of several nuclear-encoded mitochondrial genes and downregulation of key mitochondrial proteins in the brain of Nr2f1-heterozygous mice, a validated BBSOAS model. Our data point to an active role for NR2F1 in the mitochondrial gene expression regulatory network in neurons and support the involvement of mitochondrial dysfunction in BBSOAS pathogenesis.


Subject(s)
COUP Transcription Factor I , Eye Abnormalities , Intellectual Disability , Optic Atrophy , Animals , Humans , Mice , Brain/metabolism , COUP Transcription Factor I/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Intellectual Disability/genetics , Mitochondria , Mutation/genetics , Optic Atrophy/genetics , Optic Atrophy/metabolism
3.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34360747

ABSTRACT

Steroid hormones represent an amazing class of molecules that play pleiotropic roles in vertebrates. In mammals, during postnatal development, sex steroids significantly influence the organization of sexually dimorphic neural circuits underlying behaviors critical for survival, such as the reproductive one. During the last decades, multiple studies have shown that many cortical and subcortical brain regions undergo sex steroid-dependent structural organization around puberty, a critical stage of life characterized by high sensitivity to external stimuli and a profound structural and functional remodeling of the organism. Here, we first give an overview of current data on how sex steroids shape the peripubertal brain by regulating neuroplasticity mechanisms. Then, we focus on adult neurogenesis, a striking form of persistent structural plasticity involved in the control of social behaviors and regulated by a fine-tuned integration of external and internal cues. We discuss recent data supporting that the sex steroid-dependent peripubertal organization of neural circuits involves a sexually dimorphic set-up of adult neurogenesis that in turn could be relevant for sex-specific reproductive behaviors.


Subject(s)
Brain/metabolism , Gonadal Steroid Hormones/metabolism , Neurogenesis , Puberty/metabolism , Sex Characteristics , Adult , Animals , Female , Humans , Male , Sexual Behavior , Social Behavior
4.
Int J Mol Sci ; 22(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924098

ABSTRACT

Neurogranin (Ng) is a brain-specific postsynaptic protein, whose role in modulating Ca2+/calmodulin signaling in glutamatergic neurons has been linked to enhancement in synaptic plasticity and cognitive functions. Accordingly, Ng knock-out (Ng-ko) mice display hippocampal-dependent learning and memory impairments associated with a deficit in long-term potentiation induction. In the adult olfactory bulb (OB), Ng is expressed by a large population of GABAergic granule cells (GCs) that are continuously generated during adult life, undergo high synaptic remodeling in response to the sensory context, and play a key role in odor processing. However, the possible implication of Ng in OB plasticity and function is yet to be investigated. Here, we show that Ng expression in the OB is associated with the mature state of adult-born GCs, where its active-phosphorylated form is concentrated at post-synaptic sites. Constitutive loss of Ng in Ng-ko mice resulted in defective spine density in adult-born GCs, while their survival remained unaltered. Moreover, Ng-ko mice show an impaired odor-reward associative memory coupled with reduced expression of the activity-dependent transcription factor Zif268 in olfactory GCs. Overall, our data support a role for Ng in the molecular mechanisms underlying GC plasticity and the formation of olfactory associative memory.


Subject(s)
Neurogranin/metabolism , Animals , Blotting, Western , Immunohistochemistry , Interneurons/metabolism , Mice , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Olfactory Perception/physiology , Phosphorylation
5.
Front Neuroanat ; 14: 584493, 2020.
Article in English | MEDLINE | ID: mdl-33328903

ABSTRACT

Adult neurogenesis, a striking form of neural plasticity, is involved in the modulation of social stimuli driving reproduction. Previous studies on adult neurogenesis have shown that this process is significantly modulated around puberty in female mice. Puberty is a critical developmental period triggered by increased secretion of the gonadotropin releasing hormone (GnRH), which controls the activity of the hypothalamic-pituitary-gonadal axis (HPG). Secretion of HPG-axis factors at puberty participates to the refinement of neural circuits that govern reproduction. Here, by exploiting a transgenic GnRH deficient mouse model, that progressively loses GnRH expression during postnatal development (GnRH::Cre;Dicer loxP/loxP mice), we found that a postnatally-acquired dysfunction in the GnRH system affects adult neurogenesis selectively in the subventricular-zone neurogenic niche in a sexually dimorphic way. Moreover, by examining adult females ovariectomized before the onset of puberty, we provide important evidence that, among the HPG-axis secreting factors, the circulating levels of gonadal hormones during pre-/peri-pubertal life contribute to set-up the proper adult subventricular zone-olfactory bulb neurogenic system.

6.
Elife ; 92020 10 13.
Article in English | MEDLINE | ID: mdl-33048047

ABSTRACT

Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.


Subject(s)
Microscopy, Fluorescence, Multiphoton/methods , Thalamus/diagnostic imaging , Animals , Behavior, Animal , Endoscopes , Female , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton/instrumentation , Neurons/physiology , Thalamus/physiology
7.
Cell Rep ; 22(11): 3087-3098, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29539433

ABSTRACT

Sensory information is encoded within the brain in distributed spatiotemporal patterns of neuronal activity. Understanding how these patterns influence behavior requires a method to measure and to bidirectionally perturb with high spatial resolution the activity of the multiple neuronal cell types engaged in sensory processing. Here, we combined two-photon holography to stimulate neurons expressing blue light-sensitive opsins (ChR2 and GtACR2) with two-photon imaging of the red-shifted indicator jRCaMP1a in the mouse neocortex in vivo. We demonstrate efficient control of neural excitability across cell types and layers with holographic stimulation and improved spatial resolution by opsin somatic targeting. Moreover, we performed simultaneous two-photon imaging of jRCaMP1a and bidirectional two-photon manipulation of cellular activity with negligible effect of the imaging beam on opsin excitation. This all-optical approach represents a powerful tool to causally dissect how activity patterns in specified ensembles of neurons determine brain function and animal behavior.


Subject(s)
Behavior, Animal/physiology , Neurons/metabolism , Optogenetics/methods , Photic Stimulation/methods , Animals , Mice
8.
Nat Commun ; 9(1): 82, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311610

ABSTRACT

The signaling diversity of GABAergic interneurons to post-synaptic neurons is crucial to generate the functional heterogeneity that characterizes brain circuits. Whether this diversity applies to other brain cells, such as the glial cells astrocytes, remains unexplored. Using optogenetics and two-photon functional imaging in the adult mouse neocortex, we here reveal that parvalbumin- and somatostatin-expressing interneurons, two key interneuron classes in the brain, differentially signal to astrocytes inducing weak and robust GABAB receptor-mediated Ca2+ elevations, respectively. Furthermore, the astrocyte response depresses upon parvalbumin interneuron repetitive stimulations and potentiates upon somatostatin interneuron repetitive stimulations, revealing a distinguished astrocyte plasticity. Remarkably, the potentiated response crucially depends on the neuropeptide somatostatin, released by somatostatin interneurons, which activates somatostatin receptors at astrocytic processes. Our study unveils, in the living brain, a hitherto unidentified signaling specificity between interneuron subtypes and astrocytes opening a new perspective into the role of astrocytes as non-neuronal components of inhibitory circuits.


Subject(s)
Astrocytes/metabolism , Interneurons/metabolism , Signal Transduction , Somatosensory Cortex/metabolism , Somatostatin/metabolism , Animals , Calcium/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neocortex/cytology , Neocortex/metabolism , Neuronal Plasticity , Optogenetics , Parvalbumins/metabolism , Patch-Clamp Techniques , Receptors, GABA-B/metabolism
9.
Elife ; 62017 05 16.
Article in English | MEDLINE | ID: mdl-28509666

ABSTRACT

Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.


Subject(s)
Cerebral Cortex/physiology , Interneurons/physiology , Neural Inhibition , Sleep , Wakefulness , Animals , Electroencephalography , Mice , Optogenetics
11.
Sci Rep ; 7: 40041, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28053310

ABSTRACT

Genetically encoded calcium indicators and optogenetic actuators can report and manipulate the activity of specific neuronal populations. However, applying imaging and optogenetics simultaneously has been difficult to establish in the mammalian brain, even though combining the techniques would provide a powerful approach to reveal the functional organization of neural circuits. Here, we developed a technique based on patterned two-photon illumination to allow fast scanless imaging of GCaMP6 signals in the intact mouse brain at the same time as single-photon optogenetic inhibition with Archaerhodopsin. Using combined imaging and electrophysiological recording, we demonstrate that single and short bursts of action potentials in pyramidal neurons can be detected in the scanless modality at acquisition frequencies up to 1 kHz. Moreover, we demonstrate that our system strongly reduces the artifacts in the fluorescence detection that are induced by single-photon optogenetic illumination. Finally, we validated our technique investigating the role of parvalbumin-positive (PV) interneurons in the control of spontaneous cortical dynamics. Monitoring the activity of cellular populations on a precise spatiotemporal scale while manipulating neuronal activity with optogenetics provides a powerful tool to causally elucidate the cellular mechanisms underlying circuit function in the intact mammalian brain.


Subject(s)
Brain/physiology , Neural Inhibition , Optical Imaging/methods , Optogenetics/methods , Pyramidal Cells/physiology , Animals , Electroencephalography , Mice
12.
Biomed Opt Express ; 7(10): 3958-3967, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27867707

ABSTRACT

Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain.

13.
Front Neurosci ; 10: 189, 2016.
Article in English | MEDLINE | ID: mdl-27199651

ABSTRACT

The olfactory bulb (OB) is a highly plastic brain region involved in the early processing of olfactory information. A remarkably feature of the OB circuits in rodents is the constitutive integration of new neurons that takes place during adulthood. Newborn cells in the adult OB are mostly inhibitory interneurons belonging to chemically, morphologically and functionally heterogeneous types. Although there is general agreement that adult neurogenesis in the OB plays a key role in sensory information processing and olfaction-related plasticity, the contribution of each interneuron subtype to such functions is far to be elucidated. Here, we focus on the dopaminergic (DA) interneurons: we highlight recent findings about their morphological features and then describe the molecular factors required for the specification/differentiation and maintenance of the DA phenotype in adult born neurons. We also discuss dynamic changes of the DA interneuron population related to age, environmental stimuli and lesions, and their possible functional implications.

14.
J Neurosci ; 35(26): 9544-57, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26134638

ABSTRACT

Parvalbumin (Pv)-positive inhibitory interneurons effectively control network excitability, and their optogenetic activation has been reported to block epileptic seizures. An intense activity in GABAergic interneurons, including Pv interneurons, before seizures has been described in different experimental models of epilepsy, raising the hypothesis that an increased GABAergic inhibitory signal may, under certain conditions, initiate seizures. It is therefore unclear whether the activity of Pv interneurons enhances or opposes epileptiform activities. Here we use a mouse cortical slice model of focal epilepsy in which the epileptogenic focus can be identified and the role of Pv interneurons in the generation and propagation of seizure-like ictal events is accurately analyzed by a combination of optogenetic, electrophysiological, and imaging techniques. We found that a selective activation of Pv interneurons at the focus failed to block ictal generation and induced postinhibitory rebound spiking in pyramidal neurons, enhancing neuronal synchrony and promoting ictal generation. In contrast, a selective activation of Pv interneurons distant from the focus blocked ictal propagation and shortened ictal duration at the focus. We revealed that the reduced ictal duration was a direct consequence of the ictal propagation block, probably by preventing newly generated afterdischarges to travel backwards to the original focus of ictal initiation. Similar results were obtained upon individual Pv interneuron activation by intracellular depolarizing current pulses. The functional dichotomy of Pv interneurons here described opens new perspectives to our understanding of how local inhibitory circuits govern generation and spread of focal epileptiform activities.


Subject(s)
Action Potentials/physiology , Brain/cytology , Interneurons/metabolism , Neural Inhibition/physiology , Parvalbumins/metabolism , Action Potentials/drug effects , Action Potentials/genetics , Animals , Animals, Newborn , Calcium/metabolism , Channelrhodopsins , Excitatory Amino Acid Antagonists/pharmacology , Female , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Transgenic , N-Methylaspartate/pharmacology , Neural Inhibition/drug effects , Parvalbumins/genetics , Photic Stimulation , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Transduction, Genetic , gamma-Aminobutyric Acid/metabolism
15.
J Neurosci Methods ; 241: 66-77, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25497065

ABSTRACT

Brain function relies on electrical signaling among ensembles of neurons. These signals are encoded in space - neurons are organized in complex three-dimensional networks - and in time-cells generate electrical signals on a millisecond scale. How the spatial and temporal structure of these signals controls higher brain functions is largely unknown. The recent advent of novel molecules that manipulate and monitor electrical activity in genetically identified cells provides, for the first time, the ability to causally test the contribution of specific cell subpopulations in these complex brain phenomena. However, most of the commonly used approaches are limited in their ability to illuminate brain tissue with high spatial and temporal precision. In this review article, we focus on one technique, patterned illumination through the phase modulation of light using liquid crystal spatial light modulators (LC-SLMs), which has the potential to overcome some of the major limitations of current experimental approaches.


Subject(s)
Brain/cytology , Light , Nerve Net/chemistry , Nerve Net/cytology , Optogenetics/methods , Photic Stimulation/methods , Animals , Humans
16.
Eur J Neurosci ; 40(10): 3450-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25216299

ABSTRACT

The olfactory bulb (OB) is the first brain region involved in the processing of olfactory information. In adult mice, the OB is highly plastic, undergoing cellular/molecular dynamic changes that are modulated by sensory experience. Odour deprivation induces down-regulation of tyrosine hydroxylase (TH) expression in OB dopaminergic interneurons located in the glomerular layer (GL), resulting in decreased dopamine in the OB. Although the effect of sensory deprivation is well established, little is known about the influence of odour enrichment on dopaminergic cells. Here we report that prolonged odour enrichment on C57BL/6J strain mice selectively increases TH-immunopositive cells in the GL by nearly 20%. Following odour enrichment on TH-green fluorescent protein (GFP) transgenic mice, in which GFP identified both mature TH-positive cells and putative immature dopaminergic cells expressing TH mRNA but not TH protein, we found a similar 20% increase in GFP-expressing cells, with no changes in the ratio between TH-positive and TH-negative cells. These data suggest that enriched conditions induce an expansion in the whole dopaminergic lineage. Accordingly, by using 5-bromo-2-deoxyuridine injections to label adult-generated cells in the GL of TH-GFP mice, we found an increase in the percentage of 5-bromo-2-deoxyuridine-positive dopaminergic cells in enriched compared with control conditions, whereas no differences were found for calretinin- and calbindin-positive subtypes. Strikingly, the fraction of newborn cells among the dopaminergic population doubled in enriched conditions. On the whole, our results demonstrate that odour enrichment drives increased integration of adult-generated dopaminergic cells that could be critical to adapt the OB circuits to the environmental incoming information.


Subject(s)
Dopaminergic Neurons/physiology , Odorants , Olfactory Bulb/physiology , Smell/physiology , Animals , Bromodeoxyuridine , Calbindin 2/metabolism , Calbindins/metabolism , Fluorescent Antibody Technique , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Housing, Animal , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/physiology , Physical Stimulation , RNA, Messenger/metabolism , Random Allocation , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
17.
Microsc Res Tech ; 77(7): 492-501, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24504776

ABSTRACT

Mapping the activity of neuronal circuits with high resolution in the intact brain is a fundamental step toward understanding brain function. In the last several years, nonlinear microscopy combined with fluorescent activity reporters has become a crucial tool for achieving this goal. In this review article, we will highlight the principles underlying nonlinear microscopy and discuss its application to neuroscience, focusing on recent functional studies in the rodent neocortex in combination with genetically encoded calcium indicators.


Subject(s)
Brain Mapping/methods , Microscopy, Fluorescence, Multiphoton/methods , Animals , Fluorescent Dyes , Humans , Neural Pathways/anatomy & histology
18.
Development ; 140(24): 4850-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24227652

ABSTRACT

COUP-TFI is an orphan nuclear receptor acting as a strong transcriptional regulator in different aspects of forebrain embryonic development. In this study, we investigated COUP-TFI expression and function in the mouse olfactory bulb (OB), a highly plastic telencephalic region in which continuous integration of newly generated inhibitory interneurons occurs throughout life. OB interneurons belong to different populations that originate from distinct progenitor lineages. Here, we show that COUP-TFI is highly expressed in tyrosine hydroxylase (TH)-positive dopaminergic interneurons in the adult OB glomerular layer (GL). We found that odour deprivation, which is known to downregulate TH expression in the OB, also downregulates COUP-TFI in dopaminergic cells, indicating a possible correlation between TH- and COUP-TFI-activity-dependent action. Moreover, we demonstrate that conditional inactivation of COUP-TFI in the EMX1 lineage results in a significant reduction of both TH and ZIF268 expression in the GL. Finally, lentiviral vector-mediated COUP-TFI deletion in adult-generated interneurons confirmed that COUP-TFI acts cell-autonomously in the control of TH and ZIF268 expression. These data indicate that COUP-TFI regulates TH expression in OB cells through an activity-dependent mechanism involving ZIF268 induction and strongly argue for a maintenance rather than establishment function of COUP-TFI in dopaminergic commitment. Our study reveals a previously unknown role for COUP-TFI in the adult brain as a key regulator in the control of sensory-dependent plasticity in olfactory dopaminergic neurons.


Subject(s)
COUP Transcription Factor I/metabolism , Dopaminergic Neurons/metabolism , Early Growth Response Protein 1/metabolism , Olfactory Bulb/metabolism , Tyrosine 3-Monooxygenase/biosynthesis , Animals , Early Growth Response Protein 1/biosynthesis , Homeodomain Proteins/metabolism , Juxtaglomerular Apparatus/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sensory Deprivation , Smell/physiology , Transcription Factors/metabolism
19.
Nat Neurosci ; 16(2): 227-34, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23313909

ABSTRACT

In the absence of external stimuli, the mammalian neocortex shows intrinsic network oscillations. These dynamics are characterized by translaminar assemblies of neurons whose activity synchronizes rhythmically in space and time. How different cortical layers influence the formation of these spontaneous cellular assemblies is poorly understood. We found that excitatory neurons in supragranular and infragranular layers have distinct roles in the regulation of intrinsic low-frequency oscillations in mice in vivo. Optogenetic activation of infragranular neurons generated network activity that resembled spontaneous events, whereas photoinhibition of these same neurons substantially attenuated slow ongoing dynamics. In contrast, light activation and inhibition of supragranular cells had modest effects on spontaneous slow activity. This study represents, to the best of our knowledge, the first causal demonstration that excitatory circuits located in distinct cortical layers differentially control spontaneous low-frequency dynamics.


Subject(s)
Models, Neurological , Neocortex/cytology , Neocortex/physiology , Nerve Net/physiology , Neural Pathways/physiology , Neurons/physiology , Action Potentials/physiology , Animals , Animals, Newborn , Bacterial Proteins/genetics , Channelrhodopsins , Electric Stimulation , Electroencephalography , Electroporation , Female , In Vitro Techniques , Luminescent Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nonlinear Dynamics , Patch-Clamp Techniques , Phosphopyruvate Hydratase/metabolism , Photic Stimulation , Pregnancy , Proteins/genetics , RNA, Untranslated , Retinol-Binding Proteins, Plasma/genetics
20.
J Chem Neuroanat ; 42(4): 304-16, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21641990

ABSTRACT

Adult neurogenesis is due to the persistence of pools of constitutive stem cells able to give rise to a progeny of proliferating progenitors. In rodents, adult neurogenic niches have been found in the subventricular zone (SVZ) along the lateral ventricles and in the subgranular zone of the dentate gyrus in the hippocampus. SVZ progenitors undergo a unique process of tangential migration from the lateral ventricle to the olfactory bulb (OB) where they differentiate mainly into GABAergic interneurons in the granule and glomerular layers. SVZ progenitor proliferation, migration and differentiation into fully integrated neurons, are strictly related processes regulated by complex interactions between cell intrinsic and extrinsic influences. Numerous observations demonstrate that neurotrasmitters are involved in all steps of the adult neurogenic process, but the understanding of their role is hampered by their intricate mechanism of action and by the highly complex network in which neurotransmitters work. By considering the three main steps of olfactory adult neurogenesis (proliferation, migration and integration), this review will discuss recent advances in the study of neurotransmitters, highlighting the regulatory mechanisms upstream and downstream their action.


Subject(s)
Neurogenesis/physiology , Neurons/physiology , Neurotransmitter Agents/physiology , Olfactory Bulb/growth & development , Stem Cells/physiology , Adult , Animals , Cell Differentiation/physiology , Cellular Senescence/physiology , Humans , Olfactory Bulb/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...