Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-26382506

ABSTRACT

The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

2.
J Phys Chem A ; 119(50): 11973-82, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26061287

ABSTRACT

A detailed analysis of an ionic reaction that plays a crucial role in the carbon chemistry of the interstellar medium (ISM) is carried out by computing ab initio reactive cross sections with a quantum method and by further obtaining the corresponding CH(+) destruction rates over a range of temperatures that shows good overall agreement with existing experiments. The differences found between all existing calculations and the very-low-T experiments are discussed and explored via a simple numerical model that links these cross section reductions to collinear approaches where nonadiabatic crossing is expected to dominate. The new rates are further linked to a complex chemical network that models the evolution of the CH(+) abundance in the photodissociation region (PDR) and molecular cloud (MC) environments of the ISM. The abundances of CH(+) are given by numerical solutions of a large set of coupled, first-order kinetics equations that employs our new chemical package krome. The analysis that we carry out reveals that the important region for CH(+) destruction is that above 100 K, hence showing that, at least for this reaction, the differences with the existing laboratory low-T experiments are of essentially no importance within the astrochemical environments discussed here because, at those temperatures, other chemical processes involving the title molecule are taking over. A detailed analysis of the chemical network involving CH(+) also shows that a slight decrease in the initial oxygen abundance might lead to higher CH(+) abundances because the main chemical carbon ion destruction channel is reduced in efficiency. This might provide an alternative chemical route to understand the reason why general astrochemical models fail when the observed CH(+) abundances are matched with the outcomes of their calculations.

3.
Phys Chem Chem Phys ; 14(2): 637-45, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22086258

ABSTRACT

The gas-phase reaction of LiH(+) (X(2)Σ) with He((1)S) atoms, yielding Li(+)He with a small endothermicity for the rotovibrational ground state of the reagents, is analysed using the quantum reactive approach that employs the Negative Imaginary Potential (NIP) scheme discussed earlier in the literature. The dependence of low-T rates on the initial vibrational state of LiH(+) is analysed and the role of low-energy Feshbach resonances is also discussed. The inverse destruction reaction of LiHe(+), a markedly exothermic process, is also investigated and the rates are computed in the same range of temperatures. The possible roles of these reactions in early universe astrophysical networks, in He droplets environments or in cold traps are briefly discussed.

4.
J Chem Phys ; 135(2): 024304, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21766939

ABSTRACT

In this paper, we report our investigation of the translational energy relaxation of fast S((1)D) atoms in a Xe thermal bath. The interaction potential of Xe-S was constructed using ab initio methods. Total and differential cross sections were then calculated. The latter have been incorporated into the construction of the kernel of the Boltzmann equation describing the energy relaxation process. The solution of the Boltzmann equation was obtained and results were compared with those reported in experiments [G. Nan, and P. L. Houston, J. Chem. Phys. 97, 7865 (1992)]. Good agreement with the measured time-dependent relative velocity of fast S((1)D) atoms was obtained except at long relaxation times. The discrepancy may be due to the error accumulation caused by the use of hard sphere approximation and the Monte Carlo analysis of the experimental data. Our accurate description of the energy relaxation process led to an increase in the number of collisions required to achieve equilibrium by an order of magnitude compared to the number given by the hard-sphere approximation.

5.
J Phys Chem A ; 115(29): 8197-203, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21688842

ABSTRACT

Quantum reactive calculations are presented for an ion-atom reaction involving the HeH(+)cation and its destruction via a barrierless interaction with H atoms. The range of collision energies considered is that of a cold trap regime (around and below millikelvin) where the ionic partner could be spatially confined. Specific resonant features caused by the interplay of the strong ionic interaction with the very slow partners' dynamics are found and analyzed. Indications are also given on the consequences of the abstraction mechanism that acts for this reaction at low energies.

6.
J Chem Phys ; 131(5): 054302, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19673557

ABSTRACT

Hydrogen is of critical importance in atomic and molecular physics and the development of a simple and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant advance. In this study we simulate a recently proposed trap-loading mechanism for trapping hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering cross sections that control the energy transfer of initially cold atoms are obtained. They are then used to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution function. Based on the simulations we discuss the prospects of the technique.

7.
J Chem Phys ; 130(22): 224903, 2009 Jun 14.
Article in English | MEDLINE | ID: mdl-19530785

ABSTRACT

In this paper, we carry out variational Monte Carlo and diffusion Monte Carlo (DMC) calculations for Li(2)((1)Sigma(g) (+))((4)He)(N) and Li(2)((3)Sigma(u) (+))((4)He)(N) with N up to 30 and discuss in detail the results of our computations. After a comparison between our DMC energies with the "exact" discrete variable representation values for the species with one (4)He, in order to test the quality of our computations at 0 K, we analyze the structural features of the whole range of doped clusters. We find that both species reside on the droplet surface, but that their orientation is spin driven, i.e., the singlet molecule is perpendicular and the triplet one is parallel to the droplet's surface. We have also computed quantum vibrational relaxation rates for both dimers in collision with a single (4)He and we find them to differ by orders of magnitude at the estimated surface temperature. Our results therefore confirm the findings from a great number of experimental data present in the current literature and provide one of the first attempts at giving an accurate, fully quantum picture for the nanoscopic properties of alkali dimers in (4)He clusters.

8.
J Chem Phys ; 128(22): 224312, 2008 Jun 14.
Article in English | MEDLINE | ID: mdl-18554018

ABSTRACT

The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.

9.
J Chem Phys ; 127(22): 224303, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18081392

ABSTRACT

Calculations have been carried out for the vibrational quenching of excited H(2) molecules which collide with Li(+) ions at ultralow energies. The dynamics has been treated exactly using the well-known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier by our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g., the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made such that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...