Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 118(2): 638-653, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33599243

ABSTRACT

AIMS: Pathological arterial remodelling including neointimal hyperplasia and atherosclerosis is the main underlying cause for occluding arterial diseases. Cezanne is a novel deubiquitinating enzyme, functioning as a NF-кB negative regulator, and plays a key role in renal inflammatory response and kidney injury induced by ischaemia. Here we attempted to examine its pathological role in vascular smooth muscle cell (VSMC) pathology and arterial remodelling. METHODS AND RESULTS: Cezanne expression levels were consistently induced by various atherogenic stimuli in VSMCs, and in remodelled arteries upon injury. Functionally, VSMCs over-expressing wild-type Cezanne, but not the mutated catalytically-inactive Cezanne (C209S), had an increased proliferative ability and mobility, while the opposite was observed in VSMCs with Cezanne knockdown. Surprisingly, we observed no significant effects of Cezanne on VSMC apoptosis, NF-κB signalling, or inflammation. RNA-sequencing and biochemical studies showed that Cezanne drives VSMC proliferation by regulating CCN family member 1 (CCN1) by targeting ß-catenin for deubiquitination. Importantly, local correction of Cezanne expression in the injured arteries greatly decreased VSMC proliferation, and prevented arterial inward remodelling. Interestingly, global Cezanne gene deletion in mice led to smaller atherosclerotic plaques, but with a lower level of plaque stability. Translating, we observed a similar role for Cezanne in human VSMCs, and higher expression levels of Cezanne in human atherosclerotic lesions. CONCLUSION: Cezanne is a key regulator of VSMC proliferation and migration in pathological arterial remodelling. Our findings have important implications for therapeutic targeting Cezanne signalling and VSMC pathology in vascular diseases.


Subject(s)
Atherosclerosis/enzymology , Endopeptidases/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Vascular Remodeling , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Cysteine-Rich Protein 61/genetics , Cysteine-Rich Protein 61/metabolism , Disease Models, Animal , Endopeptidases/genetics , Humans , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , NF-kappa B/metabolism , Neointima , Ubiquitination , beta Catenin/genetics
2.
Cardiovasc Res ; 114(2): 324-335, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29126223

ABSTRACT

Objective: Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are incompletely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors and downstream signalling was assessed. Methods and results: Cultured human endothelial cells were exposed to atheroprotective (high uniform) or atheroprone (low oscillatory) shear stress for 72 h prior to assessment of ATP responses. Imaging of cells loaded with a calcium-sensitive fluorescent dye revealed that atheroprone flow enhanced extracellular calcium influx in response to 300 µM 2'(3')-O-(4-Benzoylbenzoyl) adenosine-5'-triphosphate. Pre-treatment with pharmacological inhibitors demonstrated that this process required purinergic P2X7 receptors. The mechanism involved altered expression of P2X7, which was induced by atheroprone flow conditions in cultured cells. Similarly, en face staining of the murine aorta revealed enriched P2X7 expression at an atheroprone site. Functional studies in cultured endothelial cells showed that atheroprone flow induced p38 phosphorylation and up-regulation of E-selectin and IL-8 secretion via a P2X7-dependent mechanism. Moreover, genetic deletion of P2X7 significantly reduced E-selectin at atheroprone regions of the murine aorta. Conclusions: These findings reveal that P2X7 is regulated by shear forces leading to its accumulation at atheroprone sites that are exposed to disturbed patterns of blood flow. P2X7 promotes endothelial inflammation at atheroprone sites by transducing ATP signals into p38 activation. Thus P2X7 integrates vascular mechanical responses with purinergic signalling to promote endothelial dysfunction and may provide an attractive potential therapeutic target to prevent or reduce atherosclerosis.


Subject(s)
Adenosine Triphosphate/metabolism , Atherosclerosis/enzymology , Human Umbilical Vein Endothelial Cells/enzymology , Inflammation/enzymology , Mechanotransduction, Cellular , Receptors, Purinergic P2X7/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Calcium Signaling , Cells, Cultured , Disease Models, Animal , E-Selectin/metabolism , Female , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation/genetics , Inflammation/pathology , Interleukin-8/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Plaque, Atherosclerotic , Receptors, Purinergic P2X7/genetics , Regional Blood Flow , Stress, Mechanical , Time Factors
3.
Arterioscler Thromb Vasc Biol ; 37(11): 2087-2101, 2017 11.
Article in English | MEDLINE | ID: mdl-28882872

ABSTRACT

OBJECTIVE: Atherosclerosis develops near branches and bends of arteries that are exposed to low shear stress (mechanical drag). These sites are characterized by excessive endothelial cell (EC) proliferation and inflammation that promote lesion initiation. The transcription factor HIF1α (hypoxia-inducible factor 1α) is canonically activated by hypoxia and has a role in plaque neovascularization. We studied the influence of shear stress on HIF1α activation and the contribution of this noncanonical pathway to lesion initiation. APPROACH AND RESULTS: Quantitative polymerase chain reaction and en face staining revealed that HIF1α was expressed preferentially at low shear stress regions of porcine and murine arteries. Low shear stress induced HIF1α in cultured EC in the presence of atmospheric oxygen. The mechanism involves the transcription factor nuclear factor-κB that induced HIF1α transcripts and induction of the deubiquitinating enzyme Cezanne that stabilized HIF1α protein. Gene silencing revealed that HIF1α enhanced proliferation and inflammatory activation in EC exposed to low shear stress via induction of glycolysis enzymes. We validated this observation by imposing low shear stress in murine carotid arteries (partial ligation) that upregulated the expression of HIF1α, glycolysis enzymes, and inflammatory genes and enhanced EC proliferation. EC-specific genetic deletion of HIF1α in hypercholesterolemic apolipoprotein E-defecient mice reduced inflammation and endothelial proliferation in partially ligated arteries, indicating that HIF1α drives inflammation and vascular dysfunction at low shear stress regions. CONCLUSIONS: Mechanical low shear stress activates HIF1α at atheroprone regions of arteries via nuclear factor-κB and Cezanne. HIF1α promotes atherosclerosis initiation at these sites by inducing excessive EC proliferation and inflammation via the induction of glycolysis enzymes.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/metabolism , Mechanotransduction, Cellular , Plaque, Atherosclerotic , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Endopeptidases/metabolism , Endothelial Cells/pathology , Enzyme Induction , Female , Genetic Predisposition to Disease , Glycolysis , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/genetics , Inflammation/pathology , Inflammation Mediators/metabolism , Mice, Knockout , NF-kappa B/metabolism , Oxygen/metabolism , Phenotype , Protein Stability , Proteolysis , RNA Interference , Regional Blood Flow , Stress, Mechanical , Sus scrofa , Time Factors , Transfection , Ubiquitination , Up-Regulation
4.
Arterioscler Thromb Vasc Biol ; 37(1): 130-143, 2017 01.
Article in English | MEDLINE | ID: mdl-27834691

ABSTRACT

OBJECTIVE: Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. APPROACH AND RESULTS: First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2-like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. CONCLUSIONS: We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites.


Subject(s)
Apoptosis , Atherosclerosis/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Mechanotransduction, Cellular/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Cells, Cultured , Embryo, Nonmammalian/blood supply , Endothelial Cells/pathology , Female , Gene Expression Profiling/methods , Gene Knockdown Techniques , Gene Regulatory Networks , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Mice , Phenotype , RNA Interference , Regional Blood Flow , Stress, Mechanical , Swine , Transcriptome , Transfection , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
5.
Cardiovasc Res ; 112(3): 689-701, 2016 12.
Article in English | MEDLINE | ID: mdl-27671802

ABSTRACT

AIMS: Stent deployment causes endothelial cells (EC) denudation, which promotes in-stent restenosis and thrombosis. Thus endothelial regrowth in stented arteries is an important therapeutic goal. Stent struts modify local hemodynamics, however the effects of flow perturbation on EC injury and repair are incompletely understood. By studying the effects of stent struts on flow and EC migration, we identified an intervention that promotes endothelial repair in stented arteries. METHODS AND RESULTS: In vitro and in vivo models were developed to monitor endothelialization under flow and the influence of stent struts. A 2D parallel-plate flow chamber with 100 µm ridges arranged perpendicular to the flow was used. Live cell imaging coupled to computational fluid dynamic simulations revealed that EC migrate in the direction of flow upstream from the ridges but subsequently accumulate downstream from ridges at sites of bidirectional flow. The mechanism of EC trapping by bidirectional flow involved reduced migratory polarity associated with altered actin dynamics. Inhibition of Rho-associated protein kinase (ROCK) enhanced endothelialization of ridged surfaces by promoting migratory polarity under bidirectional flow (P < 0.01). To more closely mimic the in vivo situation, we cultured EC on the inner surface of polydimethylsiloxane tubing containing Coroflex Blue stents (65 µm struts) and monitored migration. ROCK inhibition significantly enhanced EC accumulation downstream from struts under flow (P < 0.05). We investigated the effects of ROCK inhibition on re-endothelialization in vivo using a porcine model of EC denudation and stent placement. En face staining and confocal microscopy revealed that inhibition of ROCK using fasudil (30 mg/day via osmotic minipump) significantly increased re-endothelialization of stented carotid arteries (P < 0.05). CONCLUSIONS: Stent struts delay endothelial repair by generating localized bidirectional flow which traps migrating EC. ROCK inhibitors accelerate endothelial repair of stented arteries by enhancing EC polarity and migration through regions of bidirectional flow.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Angioplasty, Balloon/instrumentation , Carotid Arteries/drug effects , Cell Movement/drug effects , Endothelial Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Re-Epithelialization/drug effects , Stents , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Animals , Carotid Arteries/enzymology , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Cells, Cultured , Computer Simulation , Endothelial Cells/enzymology , Endothelial Cells/pathology , Hemodynamics/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Hydrodynamics , Male , Models, Animal , Models, Cardiovascular , Myosin Light Chains/metabolism , Phenotype , Prosthesis Design , Regional Blood Flow , Signal Transduction/drug effects , Sus scrofa , Time Factors , rho-Associated Kinases/metabolism
6.
Circ Res ; 119(3): 450-62, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27245171

ABSTRACT

RATIONALE: Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. OBJECTIVE: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. METHODS AND RESULTS: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. CONCLUSIONS: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.


Subject(s)
Atherosclerosis/metabolism , Blood Flow Velocity/physiology , Endothelium, Vascular/metabolism , Nuclear Proteins/biosynthesis , Twist-Related Protein 1/biosynthesis , Animals , Atherosclerosis/pathology , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Swine , Zebrafish
7.
Thromb Haemost ; 116(1): 181-90, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27075869

ABSTRACT

Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.


Subject(s)
Arteries/drug effects , Arteritis/prevention & control , Benzazepines/pharmacology , Heart Rate/drug effects , Animals , Arteries/physiology , Arteritis/physiopathology , Biomechanical Phenomena , Cardiovascular Agents/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heart Rate/physiology , Human Umbilical Vein Endothelial Cells , Humans , Hypercholesterolemia/complications , Hypercholesterolemia/drug therapy , Hypercholesterolemia/physiopathology , Ivabradine , Kruppel-Like Factor 4 , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/metabolism , Stress, Mechanical , Vascular Cell Adhesion Molecule-1/metabolism
8.
Antioxid Redox Signal ; 25(7): 389-400, 2016 09 01.
Article in English | MEDLINE | ID: mdl-26772071

ABSTRACT

SIGNIFICANCE: Shear stress controls multiple physiological processes in endothelial cells (ECs). RECENT ADVANCES: The response of ECs to shear has been studied using a range of in vitro and in vivo models. CRITICAL ISSUES: This article describes some of the experimental techniques that can be used to study endothelial responses to shear stress. It includes an appraisal of large animal, rodent, and zebrafish models of vascular mechanoresponsiveness. It also describes several bioreactors to apply flow to cells and physical methods to separate mechanoresponses from mass transport mechanisms. FUTURE DIRECTIONS: We conclude that combining in vitro and in vivo approaches can provide a detailed mechanistic view of vascular responses to force and that high-throughput systems are required for unbiased assessment of the function of shear-induced molecules. Antioxid. Redox Signal. 25, 389-400.


Subject(s)
Endothelial Cells/physiology , Endothelium, Vascular/physiology , Mechanotransduction, Cellular , Stress, Mechanical , Animals , Animals, Genetically Modified , Humans , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...