Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Adv Redox Res ; 102024 Apr.
Article in English | MEDLINE | ID: mdl-38562524

ABSTRACT

The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulation, and thus impacts fetal growth and development. We have previously shown that nano-titanium dioxide (nano-TiO2) inhalation exposure during gestation decreased fetal female pup and placenta mass [1], which persists in the following generation [2]. In utero exposed females, once mated, their offspring's placentas had increased capacity for H2O2 production. Generation of oxidants such as hydrogen peroxide (H2O2), have been shown to impact cyclooxygenase activity, specifically metabolites such as prostacyclin (PGI2) or thromboxane (TXA2). Therefore, we hypothesized that maternal nano-TiO2 inhalation exposure during gestation results in alterations in placental production of prostacyclin and thromboxane mediated by enhanced H2O2 production in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed to nano-TiO2 aerosols or filtered air (sham--control) from gestational day (GD) 10-19. Dams were euthanized on GD 20, and fetal serum and placental tissue were collected based on fetal sex. Fetal placental zones (junctional zone (JZ) and labyrinth zone (LZ)) were assessed for xanthine oxidoreductase (XOR) activity, H2O2, and catalase activity, as well as 6-keto-PGF1α and TXB2 levels. Nano-TiO2 exposed fetal female LZ demonstrated significantly greater XOR activity compared to exposed males. Exposed fetal female LZ also demonstrated significantly diminished catalase activity compared to sham-control females. Exposed fetal female LZ had significantly increased abundance of 6-keto-PGF1α compared to sham-control females and increased TXB2 compared to exposed males. In the aggregate these data indicate that maternal nano-TiO2 inhalation exposure has a greater impact on redox homeostasis and PGI2/TXA2 balance in the fetal female LZ. Future studies need to address if treatment with an XO inhibitor during gestation can prevent diminished fetal female growth during maternal nano-TiO2 inhalation exposure.

2.
Biol Reprod ; 110(2): 275-287, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-37930247

ABSTRACT

The timing of puberty onset is reliant on increased gonadotropin-releasing hormone (GnRH). This elicits a corresponding increase in luteinizing hormone (LH) due to a lessening of sensitivity to the inhibitory actions of estradiol (E2). The mechanisms underlying the increase in GnRH release likely involve a subset of neurons within the arcuate (ARC) nucleus of the hypothalamus that contain kisspeptin, neurokinin B (NKB), and dynorphin (KNDy neurons). We aimed to determine if KNDy neurons in female sheep are critical for: timely puberty onset; the LH surge; and the response to an intravenous injection of the neurokinin-3 receptor (NK3R) agonist, senktide. Prepubertal ewes received injections aimed at the ARC containing blank-saporin (control, n = 5) or NK3-saporin (NK3-SAP, n = 6) to ablate neurons expressing NK3R. Blood samples taken 3/week for 65 days following surgery were assessed for progesterone to determine onset of puberty. Control ewes exhibited onset of puberty at 33.2 ± 3.9 days post sampling initiation, whereas 5/6 NK3-SAP treated ewes didn't display an increase in progesterone. After an artificial LH surge protocol, surge amplitude was lower in NK3-SAP ewes. Finally, ewes were treated with senktide to determine if an LH response was elicited. LH pulses were evident in both groups in the absence of injections, but the response to senktide vs saline was similar between groups. These results show that KNDy cells are necessary for timely puberty onset and for full expresson of the LH surge. The occurrence of LH pulses in NK3-SAP treated ewes may indicate a recovery from an apulsatile state.


Subject(s)
Arcuate Nucleus of Hypothalamus , Luteinizing Hormone , Peptide Fragments , Substance P/analogs & derivatives , Female , Animals , Sheep , Luteinizing Hormone/pharmacology , Arcuate Nucleus of Hypothalamus/metabolism , Saporins/pharmacology , Progesterone/pharmacology , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Neurokinin B/metabolism , Dynorphins/pharmacology , Dynorphins/metabolism , Kisspeptins/metabolism
3.
Endocrinology ; 164(11)2023 09 23.
Article in English | MEDLINE | ID: mdl-37776515

ABSTRACT

The current model for the synchronization of GnRH neural activity driving GnRH and LH pulses proposes that a set of arcuate (ARC) neurons that contain kisspeptin, neurokinin B, and dynorphin (KNDy neurons) is the GnRH pulse generator. This study tested the functional role of ovine KNDy neurons in pulse generation and explored the roles of nearby Kiss1 receptor (Kiss1R)-containing cells using lesions produced with saporin (SAP) conjugates. Injection of NK3-SAP ablated over 90% of the KNDy cells, while Kiss-SAP (saporin conjugated to kisspeptin-54) lesioned about two-thirds of the Kiss1R population without affecting KNDy or GnRH cell number. Both lesions produced a dramatic decrease in LH pulse amplitude but had different effects on LH pulse patterns. NK3-SAP increased interpulse interval, but Kiss-SAP did not. In contrast, Kiss-SAP disrupted the regular hourly occurrence of LH pulses, but NK3-SAP did not. Because Kiss1R is not expressed in KNDy cells, HiPlex RNAScope was used to assess the colocalization of 8 neurotransmitters and 3 receptors in ARC Kiss1R-containing cells. Kiss1R cells primarily contained transcript markers for GABA (68%), glutamate (28%), ESR1 (estrogen receptor-α) mRNA, and OPRK1 (kappa opioid receptor) mRNA. These data support the conclusion that KNDy neurons are essential for GnRH pulses in ewes, whereas ARC Kiss1R cells are not but do maintain the amplitude and regularity of GnRH pulses. We thus propose that in sheep, ARC Kiss1R neurons form part of a positive feedback circuit that reinforces the activity of the KNDy neural network, with GABA or glutamate likely being involved.


Subject(s)
Arcuate Nucleus of Hypothalamus , Kisspeptins , Luteinizing Hormone , Neurons , Animals , Female , Arcuate Nucleus of Hypothalamus/metabolism , Dynorphins/metabolism , gamma-Aminobutyric Acid , Glutamates , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Neurokinin B/metabolism , Neurons/metabolism , Receptors, Kisspeptin-1/genetics , RNA, Messenger , Saporins , Sheep , Luteinizing Hormone/metabolism
4.
Env Sci Adv ; 2(5): 740-748, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181648

ABSTRACT

Nano-titanium dioxide (nano-TiO2) is a widely used nanomaterial found in several industrial and consumer products, including surface coatings, paints, sunscreens and cosmetics, among others. Studies have linked gestational exposure to nano-TiO2 with negative maternal and fetal health outcomes. For example, maternal pulmonary exposure to nano-TiO2 during gestation has been associated not only with maternal, but also fetal microvascular dysfunction in a rat model. One mediator of this altered vascular reactivity and inflammation is oxylipid signaling. Oxylipids are formed from dietary lipids through several enzyme-controlled pathways as well as through oxidation by reactive oxygen species. Oxylipids have been linked to control of vascular tone, inflammation, pain and other physiological and disease processes. In this study, we use a sensitive UPLC-MS/MS based analysis to probe the global oxylipid response in liver, lung, and placenta of pregnant rats exposed to nano-TiO2 aerosols. Each organ presented distinct patterns in oxylipid signaling, as assessed by principal component and hierarchical clustering heatmap analysis. In general, pro-inflammatory mediators, such as 5-hydroxyeicosatetraenoic acid (1.6 fold change) were elevated in the liver, while in the lung, anti-inflammatory and pro-resolving mediators such as 17-hydroxy docosahexaenoic acid (1.4 fold change) were elevated. In the placenta the levels of oxylipid mediators were generally decreased, both inflammatory (e.g. PGE2, 0.52 fold change) and anti-inflammatory (e.g. Leukotriene B4, 0.49 fold change). This study, the first to quantitate the levels of these oxylipids simultaneously after nano-TiO2 exposure, shows the complex interplay of pro- and anti-inflammatory mediators from multiple lipid classes and highlights the limitations of monitoring the levels of oxylipid mediators in isolation.

5.
Front Toxicol ; 5: 1096173, 2023.
Article in English | MEDLINE | ID: mdl-36950144

ABSTRACT

The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulations, thus functioning as an interface that profoundly impacts fetal growth and development. The placenta has long been considered an asexual organ, but, due to its embryonic origin it shares the same sex as the fetus. Exposures to toxicant such as diesel exhaust, have been shown to result in sexually dimorphic outcomes like decreased placental mass in exposed females. Therefore, we hypothesize that maternal nano-TiO2 inhalation exposure during gestation alters placental hemodynamics in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.69 mg/m3) or filtered air (sham-control). Dams were euthanized on GD20, and fetal tissue was collected based on fetal sex: whole placentas, placental junctional zone (JZ), and placental labyrinth zone (LZ). Fetal mass, placental mass, and placental zone percent areas were assessed for sex-based differences. Exposed fetal females were significantly smaller compared to their exposed male counterparts (2.65 ± 0.03 g vs 2.78 ± 0.04 g). Nano-TiO2 exposed fetal females had a significantly decreased percent junctional zone area compared to the sham-control females (24.37 ± 1.30% vs 30.39 ± 1.54%). The percent labyrinth zone area was significantly increased for nano-TiO2 females compared to sham-control females (75.63 ± 1.30% vs 69.61 ± 1.54%). Placental flow and hemodynamics were assessed with a variety of vasoactive substances. It was found that nano-TiO2 exposed fetal females only had a significant decrease in outflow pressure in the presence of the thromboxane (TXA2) mimetic, U46619, compared to sham-control fetal females (3.97 ± 1.30 mm Hg vs 9.10 ± 1.07 mm Hg) and nano-TiO2 fetal males (9.96 ± 0.66 mm Hg). Maternal nano-TiO2 inhalation exposure has a greater effect on fetal female mass, placental zone mass and area, and adversely impacts placental vasoreactivity. This may influence the female growth and development later in life, future studies need to further study the impact of maternal nano-TiO2 inhalation exposure on zone specific mechanisms.

7.
BMC Res Notes ; 15(1): 275, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953874

ABSTRACT

OBJECTIVE: Chronic multisymptom illness (CMI) is an idiopathic disease affecting thousands of U.S. Veterans exposed to open-air burn pits emitting aerosolized particulate matter (PM) while serving in Central and Southwest Asia and Africa. Exposure to burn pit PM can result in profound biologic consequences including chronic fatigue, impaired cognition, and respiratory diseases. Dysregulated or unresolved inflammation is a possible underlying mechanism for CMI onset. We describe a rat model of whole-body inhalation exposure using carbon black nanoparticles (CB) as a surrogate for military burn pit-related exposure. Using this model, we measured biomarkers of inflammation in multiple tissues. RESULTS: Male Sprague Dawley rats were exposed to CB aerosols by whole body inhalation (6 ± 0.83 mg/m3). Proinflammatory biomarkers were measured in multiple tissues including arteries, brain, lung, and plasma. Biomarkers of cardiovascular injury were also assayed in plasma. CB inhalation exposure increased CMI-related proinflammatory biomarkers such as IFN-γ and TNFα in multiple tissue samples. CB exposure also induced cardiovascular injury markers (adiponectin, MCP1, sE-Selectin, sICam-1 and TIMP1) in plasma. These findings support the validity of our animal exposure model for studies of burn pit-induced CMI. Future studies will model more complex toxicant mixtures as documented at multiple burn pit sites.


Subject(s)
Incineration , Soot , Animals , Biomarkers , Carbon , Chronic Disease , Inflammation , Inhalation Exposure/adverse effects , Lung , Male , Rats , Rats, Sprague-Dawley , Soot/toxicity
8.
Toxicol Sci ; 188(2): 219-233, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35642938

ABSTRACT

Pregnancy requires rapid adaptations in the uterine microcirculation to support fetal development. Nanomaterial inhalation is associated with cardiovascular dysfunction, which may impair gestation. We have shown that maternal nano-titanium dioxide (nano-TiO2) inhalation impairs microvascular endothelial function in response to arachidonic acid and thromboxane (TXA2) mimetics. However, the mechanisms underpinning this process are unknown. Therefore, we hypothesize that maternal nano-TiO2 inhalation during gestation results in uterine microvascular prostacyclin (PGI2) and TXA2 dysfunction. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.67 mg/m3) or filtered air (sham-control). Dams were euthanized on gestational day 20, and serum, uterine radial arterioles, implantation sites, and lungs were collected. Serum was assessed for PGI2 and TXA2 metabolites. TXB2, the stable TXA2 metabolite, was significantly decreased in nano-TiO2 exposed dams (597.3 ± 84.4 vs 667.6 ± 45.6 pg/ml), whereas no difference was observed for 6-keto-PGF1α, the stable PGI2 metabolite. Radial arteriole pressure myography revealed that nano-TiO2 exposure caused increased vasoconstriction to the TXA2 mimetic, U46619, compared with sham-controls (-41.3% ± 4.3% vs -16.8% ± 3.4%). Nano-TiO2 exposure diminished endothelium-dependent vasodilation to carbaprostacyclin, a PGI2 receptor agonist, compared with sham-controls (30.0% ± 9.0% vs 53.7% ± 6.0%). Maternal nano-TiO2 inhalation during gestation decreased nano-TiO2 female pup weight when compared with sham-control males (3.633 ± 0.064 vs 3.995 ± 0.124 g). Augmented TXA2 vasoconstriction and decreased PGI2 vasodilation may lead to decreased placental blood flow and compromise maternofetal exchange of waste and nutrients, which could ultimately impact fetal health outcomes.


Subject(s)
Nanostructures , Prostaglandin-Endoperoxide Synthases , Animals , Female , Fetus , Male , Placenta , Pregnancy , Rats , Rats, Sprague-Dawley
9.
Part Fibre Toxicol ; 19(1): 18, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35260159

ABSTRACT

BACKGROUND: Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO2 inhalation exposure (exclusively) resulted in altered H2O2 production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO2 inhalation exposure during gestation in the F0 dams would result in upregulated H2O2 production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups. RESULTS: Our results indicate upregulation of hepatic H2O2 production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. H2O2 production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO2 plasma increased H2O2 production. Overnight exposure of these hepatocytes to F1 plasma increased H2O2 production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO2 females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO2 uterine artery H2O2 production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO2 dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups). CONCLUSION: In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO2 generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.


Subject(s)
Inhalation Exposure , NF-kappa B , Female , Humans , Hydrogen Peroxide , Inhalation Exposure/adverse effects , Male , Oxidation-Reduction , Pregnancy , Titanium
10.
Cardiovasc Toxicol ; 22(2): 167-180, 2022 02.
Article in English | MEDLINE | ID: mdl-35066857

ABSTRACT

Maternal inhalation exposure to engineered nanomaterials (ENM) has been associated with microvascular dysfunction and adverse cardiovascular responses. Pregnancy requires coordinated vascular adaptation and growth that are imperative for survival. Key events in pregnancy hallmark distinct periods of gestation such as implantation, spiral artery remodeling, placentation, and trophoblast invasion. Angiotensin II (Ang II) is a critical vasoactive mediator responsible for adaptations and is implicated in the pathology of preeclampsia. If perturbations occur during gestation, such as those caused by ENM inhalation exposure, then maternal-fetal health consequences may occur. Our study aimed to identify the period of gestation in which maternal microvascular functional and fetal health are most vulnerable. Additionally, we wanted to determine if Ang II sensitivity and receptor density is altered due to exposure. Dams were exposed to ENM aerosols (nano-titanium dioxide) during three gestational windows: early (EE, gestational day (GD) 2-6), mid (ME, GD 8-12) or late (LE, GD 15-19). Within the EE group dry pup mass decreased by 16.3% and uterine radial artery wall to lumen ratio (WLR) increased by 25.9%. Uterine radial artery response to Ang II sensitivity increased by 40.5% in the EE group. Ang II receptor density was altered in the EE and LE group with decreased levels of AT2R. We conclude that early gestational maternal inhalation exposures resulted in altered vascular anatomy and physiology. Exposure during this time-period results in altered vascular reactivity and changes to uterine radial artery WLR, leading to decreased perfusion to the fetus and resulting in lower pup mass.


Subject(s)
Angiotensin II/pharmacology , Metal Nanoparticles/toxicity , Microcirculation , Placental Circulation , Titanium/toxicity , Uterine Artery/drug effects , Vasoconstriction/drug effects , Aerosols , Animals , Estradiol/blood , Female , Gestational Age , Inhalation Exposure , Maternal Exposure , Metal Nanoparticles/administration & dosage , Pregnancy , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/agonists , Receptor, Angiotensin, Type 1/metabolism , Titanium/administration & dosage , Uterine Artery/physiopathology
11.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830344

ABSTRACT

Electronic cigarettes are frequently viewed as a safer alternative to conventional cigarettes; however, evidence to support this perspective has not materialized. Indeed, the current literature reports that electronic cigarette use is associated with both acute lung injury and subclinical dysfunction to the lung and vasculature that may result in pathology following chronic use. E-cigarettes can alter vascular dynamics, polarize innate immune populations towards a proinflammatory state, compromise barrier function in the pulmonary endothelium and epithelium, and promote pre-oncogenic phenomena. This review will summarize the variety of e-cigarette products available to users, discuss current challenges in e-cigarette study design, outline the range of pathologies occurring in cases of e-cigarette associated acute lung injury, highlight disease supporting tissue- and cellular-level changes resulting from e-cigarette exposure, and briefly examine how these changes may promote tumorigenesis. Continued research of the mechanisms by which e-cigarettes induce pathology benefit users and clinicians by resulting in increased regulation of vaping devices, informing treatments for emerging diseases e-cigarettes produce, and increasing public awareness to reduce e-cigarette use and the onset of preventable disease.


Subject(s)
Acute Lung Injury/pathology , Cardiovascular Diseases/pathology , Electronic Nicotine Delivery Systems , Lung Neoplasms/pathology , Vaping/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/immunology , Animals , Blood Platelets/drug effects , Blood Platelets/immunology , Blood Platelets/pathology , Carcinogenesis/immunology , Carcinogenesis/pathology , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/immunology , Cytokines/biosynthesis , Cytokines/immunology , Humans , Immunity, Innate/drug effects , Lung/drug effects , Lung/immunology , Lung/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/pathology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Rodentia , Vaping/immunology
12.
Biology (Basel) ; 10(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34681086

ABSTRACT

The neural mechanisms underlying increases in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion that drive puberty onset are unknown. Neurons coexpressing kisspeptin, neurokinin B (NKB), and dynorphin, i.e., KNDy neurons, are important as kisspeptin and NKB are stimulatory, and dynorphin inhibitory, to GnRH secretion. Given this, we hypothesized that kisspeptin and NKB expression would increase, but that dynorphin expression would decrease, with puberty. We collected blood and hypothalamic tissue from ovariectomized lambs implanted with estradiol at five, six, seven, eight (puberty), and ten months of age. Mean LH values and LH pulse frequency were the lowest at five to seven months, intermediate at eight months, and highest at ten months. Kisspeptin and NKB immunopositive cell numbers did not change with age. Numbers of cells expressing mRNA for kisspeptin, NKB, or dynorphin were similar at five, eight, and ten months of age. Age did not affect mRNA expression per cell for kisspeptin or NKB, but dynorphin mRNA expression per cell was elevated at ten months versus five months. Thus, neither KNDy protein nor mRNA expression changed in a predictable manner during pubertal development. These data raise the possibility that KNDy neurons, while critical, may await other inputs for the initiation of puberty.

13.
Biol Reprod ; 105(4): 1056-1067, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34037695

ABSTRACT

Mechanisms in the brain controlling secretion of gonadotropin hormones in pigs, particularly luteinizing hormone (LH), are poorly understood. Kisspeptin is a potent LH stimulant that is essential for fertility in many species, including pigs. Neurokinin B (NKB) acting through neurokinin 3 receptor (NK3R) is involved in kisspeptin-stimulated LH release, but organization of NKB and NK3R within the porcine hypothalamus is unknown. Hypothalamic tissue from ovariectomized (OVX) gilts was used to determine the distribution of immunoreactive kisspeptin, NKB, and NK3R cells in the arcuate nucleus (ARC). Almost all kisspeptin neurons coexpressed NKB in the porcine ARC. Immunostaining for NK3R was distributed throughout the preoptic area (POA) and in several hypothalamic areas including the periventricular and retrochiasmatic areas but was not detected within the ARC. There was no colocalization of NK3R with gonadotropin-releasing hormone (GnRH), but NK3R-positive fibers in the POA were in close apposition to GnRH neurons. Treating OVX gilts with the progestin altrenogest decreased LH pulse frequency and reduced mean circulating concentrations of LH compared with OVX control gilts (P < 0.01), but the number of kisspeptin and NKB cells in the ARC did not differ between treatments. The neuroanatomical arrangement of kisspeptin, NKB, and NK3R within the porcine hypothalamus confirms they are positioned to stimulate GnRH and LH secretion in gilts, though differences with other species exist. Altrenogest suppression of LH secretion in the OVX gilt does not appear to involve decreased peptide expression of kisspeptin or NKB.


Subject(s)
Hypothalamus/metabolism , Kisspeptins/genetics , Neurokinin B/genetics , Progestins/pharmacology , Receptors, Neurokinin-3/genetics , Sus scrofa/genetics , Trenbolone Acetate/analogs & derivatives , Animals , Female , Gene Expression Profiling/veterinary , Hypothalamus/drug effects , Kisspeptins/metabolism , Neurokinin B/metabolism , Receptors, Neurokinin-3/metabolism , Sus scrofa/metabolism , Trenbolone Acetate/pharmacology
14.
Anal Chem ; 93(3): 1489-1497, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33326204

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) is the gold standard method for protein biomarkers. However, scaling up ELISA for multiplexed biomarker analysis is not a trivial task due to the lengthy procedures for fluid manipulation and high reagent/sample consumption. Herein, we present a highly scalable multiplexed ELISA that achieves a similar level of performance to commercial single-target ELISA kits as well as shorter assay time, less consumption, and simpler procedures. This ELISA is enabled by a novel microscale fluid manipulation method, composable microfluidic plates (cPlate), which are comprised of miniaturized 96-well plates and their corresponding channel plates. By assembling and disassembling the plates, all of the fluid manipulations for 96 independent ELISA reactions can be achieved simultaneously without any external fluid manipulation equipment. Simultaneous quantification of four protein biomarkers in serum samples is demonstrated with the cPlate system, achieving high sensitivity and specificity (∼ pg/mL), short assay time (∼1 h), low consumption (∼5 µL/well), high scalability, and ease of use. This platform is further applied to probe the levels of three protein biomarkers related to vascular dysfunction under pulmonary nanoparticle exposure in rat's plasma. Because of the low cost, portability, and instrument-free nature of the cPlate system, it will have great potential for multiplexed point-of-care testing in resource-limited regions.


Subject(s)
C-Reactive Protein/analysis , Carcinoembryonic Antigen/analysis , Enzyme-Linked Immunosorbent Assay , Interleukin-6/analysis , Microfluidic Analytical Techniques , Prostate-Specific Antigen/analysis , Biomarkers/analysis , Humans
15.
J Neuroendocrinol ; 32(7): e12877, 2020 07.
Article in English | MEDLINE | ID: mdl-32572994

ABSTRACT

Neurokinin B (NKB) is critical for fertility in humans and stimulates gonadotrophin-releasing hormone/luteinising hormone (LH) secretion in several species, including sheep. There is increasing evidence that the actions of NKB in the retrochiasmatic area (RCh) contribute to the induction of the preovulatory LH surge in sheep. In the present study, we determined whether there are sex differences in the response to RCh administration of senktide, an agonist to the NKB receptor (neurokinin receptor-3 [NK3R]), and in NKB and NK3R expression in the RCh of sheep. To normalise endogenous hormone concentrations, animals were gonadectomised and given implants to mimic the pattern of ovarian steroids seen in the oestrous cycle. In females, senktide microimplants in the RCh produced an increase in LH concentrations that lasted for at least 8 hours after the start of treatment, whereas a much shorter increment (approximately 2 hours) was seen in males. We next collected tissue from gonadectomised lambs 18 hours after the insertion of oestradiol implants that produce an LH surge in female, but not male, sheep for immunohistochemical analysis of NKB and NK3R expression. As expected, there were more NKB-containing neurones in the arcuate nucleus of females than males. Interestingly, there was a similar sexual dimorphism in NK3R-containing neurones in the RCh, NKB-containing close contacts onto these RCh NK3R neurones, and overall NKB-positive fibres in this region. These data demonstrate that there are both functional and morphological sex differences in NKB-NK3R signalling in the RCh and raise the possibility that this dimorphism contributes to the sex-dependent ability of oestradiol to induce an LH surge in female sheep.


Subject(s)
Hypothalamus, Middle/metabolism , Neurokinin B/metabolism , Sex Characteristics , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Female , Kisspeptins/metabolism , Male , Neurons/metabolism , Receptors, Tachykinin/metabolism , Sheep , Signal Transduction/physiology
16.
Endocrinology ; 160(12): 2990-3000, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31599937

ABSTRACT

Recent evidence has implicated neurokinin B (NKB) signaling in the retrochiasmatic area (RCh) of the ewe in the LH surge. To test this hypothesis, we first lesioned NK3R neurons in this area by using a saporin conjugate (NK3-SAP). Three weeks after bilateral injection of NK3-SAP or a blank control (BLK-SAP) into the RCh, an LH surge was induced by using an artificial follicular-phase model in ovariectomized ewes. NK3-SAP lesioned approximately 88% of RCh NK3R-containing neurons and reduced the amplitude of the estrogen-induced LH surge by 58%, an inhibition similar to that seen previously with intracerebroventricular (icv) infusion of a KISS1R antagonist (p271). We next tested the hypothesis that NKB signaling in the RCh acts via kisspeptin by determining whether the combined effects of NK3R-SAP lesions and icv infusion of p271 were additive. Experiment 1 was replicated except that ewes received two sequential artificial follicular phases with infusions of p271 or vehicle using a crossover design. The combination of the two treatments decreased the peak of the LH surge by 59%, which was similar to that seen with NK3-SAP (52%) or p271 (54%) alone. In contrast, p271 infusion delayed the onset and peak of the LH surge in both NK3-SAP- and BLK-SAP-injected ewes. Based on these data, we propose that NKB signaling in the RCh increases kisspeptin levels critical for the full amplitude of the LH surge in the ewe but that kisspeptin release occurs independently of RCh input at the onset of the surge to initiate GnRH secretion.


Subject(s)
Hypothalamus/metabolism , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Neurokinin B/metabolism , Animals , Female , Sheep
17.
Toxicol Sci ; 169(2): 524-533, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30843041

ABSTRACT

Maternal engineered nanomaterial (ENM) inhalation is associated with uterine vascular impairments and endocrine disruption that may lead to altered gestational outcomes. We have shown that nano-titanium dioxide (nano-TiO2) inhalation impairs endothelium-dependent uterine arteriolar dilation in pregnant rats. However, the mechanism underlying this dysfunction is unknown. Due to its role as a potent vasoconstrictor and essential reproductive hormone, we examined how kisspeptin is involved in nano-TiO2-induced vascular dysfunction and placental efficiency. Pregnant Sprague Dawley rats were exposed (gestational day [GD] 10) to nano-TiO2 aerosols (cumulative dose = 525 ± 16 µg; n = 8) or sham exposed (n = 6) and sacrificed on GD 20. Plasma was collected to evaluate estrogen (E2), progesterone (P4), prolactin (PRL), corticosterone (CORT), and kisspeptin. Pup and placental weights were measured to calculate placental efficiency (grams fetus/gram placental). Additionally, pressure myography was used to determine uterine artery vascular reactivity. Contractile responses were assessed via cumulative additions of kisspeptin (1 × 10-9 to 1 × 10-4 M). Estrogen was decreased at GD 20 in exposed (11.08 ± 3 pg/ml) versus sham-control rats (66.97 ± 3 pg/ml), whereas there were no differences in P4, PRL, CORT, or kisspeptin. Placental weights were increased in exposed (0.99 ± 0.03 g) versus sham-control rats (0.70 ± 0.04 g), whereas pup weights (4.01 ± 0.47 g vs 4.15 ± 0.15 g) and placental efficiency (4.5 ± 0.2 vs 6.4 ± 0.5) were decreased in exposed rats. Maternal ENM inhalation exposure augmented uterine artery vasoconstrictor responses to kisspeptin (91.2%±2.0 vs 98.6%±0.10). These studies represent initial evidence that pulmonary maternal ENM exposure perturbs the normal gestational endocrine vascular axis via a kisspeptin-dependent mechanism, and decreased placental, which may adversely affect health outcomes.


Subject(s)
Fetus/drug effects , Kisspeptins/physiology , Maternal Exposure/adverse effects , Titanium/toxicity , Uterine Artery/drug effects , Animals , Female , Gonadal Steroid Hormones/blood , Inhalation Exposure , Kisspeptins/blood , Nanoparticles , Placenta/drug effects , Placenta/pathology , Pregnancy , Rats , Rats, Sprague-Dawley , Uterine Artery/physiology
18.
Toxicol Appl Pharmacol ; 367: 51-61, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30711534

ABSTRACT

The fetal consequences of gestational engineered nanomaterial (ENM) exposure are unclear. The placenta is a barrier protecting the fetus and allowing transfer of substances from the maternal circulation. The purpose of this study was to determine the effects of maternal pulmonary titanium dioxide nanoparticle (nano-TiO2) exposure on the placenta and umbilical vascular reactivity. We hypothesized that pulmonary nano-TiO2 inhalation exposure increases placental vascular resistance and impairs umbilical vascular responsiveness. Pregnant Sprague-Dawley rats were exposed via whole-body inhalation to nano-TiO2 with an aerodynamic diameter of 188 ±â€¯0.36 nm. On gestational day (GD) 11, rats began inhalation exposures (6 h/exposure). Daily lung deposition was 87.5 ±â€¯2.7 µg. Animals were exposed for 6 days for a cumulative lung burden of 525 ±â€¯16 µg. On GD 20, placentas, umbilical artery and vein were isolated, cannulated, and treated with acetylcholine (ACh), angiotensin II (ANGII), S-nitroso-N-acetyl-DL-penicillamine (SNAP), or calcium-free superfusate (Ca2+-free). Mean outflow pressure was measured in placental units. ACh increased outflow pressure to 53 ±â€¯5 mmHg in sham-controls but only to 35 ±â€¯4 mmHg in exposed subjects. ANGII decreased outflow pressure in placentas from exposed animals (17 ±â€¯7 mmHg) compared to sham-controls (31 ±â€¯6 mmHg). Ca2+-free superfusate yielded maximal outflow pressures in sham-control (63 ±â€¯5 mmHg) and exposed (30 ±â€¯10 mmHg) rats. Umbilical artery endothelium-dependent dilation was decreased in nano-TiO2 exposed fetuses (30 ±â€¯9%) compared to sham-controls (58 ±â€¯6%), but ANGII sensitivity was increased (-79 ±â€¯20% vs -36 ±â€¯10%). These results indicate that maternal gestational pulmonary nano-TiO2 exposure increases placental vascular resistance and impairs umbilical vascular reactivity.


Subject(s)
Hemodynamics/drug effects , Metal Nanoparticles/toxicity , Placenta/blood supply , Titanium/toxicity , Animals , Female , Inhalation Exposure , Maternal Exposure , Pregnancy , Rats, Sprague-Dawley
19.
Part Fibre Toxicol ; 15(1): 43, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413212

ABSTRACT

BACKGROUND: The cardiovascular effects of pulmonary exposure to engineered nanomaterials (ENM) are poorly understood, and the reproductive consequences are even less understood. Inflammation remains the most frequently explored mechanism of ENM toxicity. However, the key mediators and steps between lung exposure and uterine health remain to be fully defined. The purpose of this study was to determine the uterine inflammatory and vascular effects of pulmonary exposure to titanium dioxide nanoparticles (nano-TiO2). We hypothesized that pulmonary nano-TiO2 exposure initiates a Th2 inflammatory response mediated by Group II innate lymphoid cells (ILC2), which may be associated with an impairment in uterine microvascular reactivity. METHODS: Female, virgin, Sprague-Dawley rats (8-12 weeks) were exposed to 100 µg of nano-TiO2 via intratracheal instillation 24 h prior to microvascular assessments. Serial blood samples were obtained at 0, 1, 2 and 4 h post-exposure for multiplex cytokine analysis. ILC2 numbers in the lungs were determined. ILC2s were isolated and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) levels were measured. Pressure myography was used to assess vascular reactivity of isolated radial arterioles. RESULTS: Pulmonary nano-TiO2 exposure was associated with an increase in IL-1ß, 4, 5 and 13 and TNF- α 4 h post-exposure, indicative of an innate Th2 inflammatory response. ILC2 numbers were significantly increased in lungs from exposed animals (1.66 ± 0.19%) compared to controls (0.19 ± 0.22%). Phosphorylation of the transactivation domain (Ser-468) of NF-κB in isolated ILC2 and IL-33 in lung epithelial cells were significantly increased (126.8 ± 4.3% and 137 ± 11% of controls respectively) by nano-TiO2 exposure. Lastly, radial endothelium-dependent arteriolar reactivity was significantly impaired (27 ± 12%), while endothelium-independent dilation (7 ± 14%) and α-adrenergic sensitivity (8 ± 2%) were not altered compared to control levels. Treatment with an anti- IL-33 antibody (1 mg/kg) 30 min prior to nano-TiO2 exposure resulted in a significant improvement in endothelium-dependent dilation and a decreased level of IL-33 in both plasma and bronchoalveolar lavage fluid. CONCLUSIONS: These results provide evidence that the uterine microvascular dysfunction that follows pulmonary ENM exposure may be initiated via activation of lung-resident ILC2 and subsequent systemic Th2-dependent inflammation.


Subject(s)
Arterioles/drug effects , Immunity, Innate/drug effects , Lung/drug effects , Lymphocytes/drug effects , Nanoparticles/toxicity , Titanium/toxicity , Uterus/blood supply , Animals , Arterioles/immunology , Arterioles/physiopathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Female , Inhalation Exposure/adverse effects , Interleukin-33/blood , Lung/blood supply , Lung/immunology , Lymphocyte Count , Lymphocytes/immunology , Microcirculation/drug effects , Microcirculation/immunology , Rats, Sprague-Dawley , Vasodilation/drug effects , Vasodilation/immunology
20.
J Anim Sci ; 96(10): 4220-4228, 2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30107562

ABSTRACT

Innate immune response to a lipopolysaccharide (LPS) challenge varies among sheep breeds. How different breeds respond to bacterial infections impacts management practices of sheep producers. Hence, clinical response, acute-phase response, and gene expression of pro- and anti-inflammatory markers in peripheral white blood cells (WBCs) were examined after an LPS challenge in Dorset and Suffolk ewes. Ewes received either PBS or 2.5 µg/kg LPS (i.v.) 4 to 5 d after onset of synchronized estrus. Blood was collected via jugular venipuncture intermittently for 24 h to determine WBC counts. Rectal temperatures and observations of behavioral/physical appearances were recorded hourly. After LPS, WBCs decreased the first hour (P = 0.0001) and rectal temperatures (P < 0.0001) increased through 4 h; both returned toward normal 6 h after challenge. Suffolk ewes exhibited greater changes in temperature (P = 0.03) and behavioral/physical responses (P < 0.0001) than Dorset ewes and had an enhanced acute-phase response demonstrated by increased concentrations of plasma haptoglobin (P = 0.04), as well as cortisol concentrations (P = 0.03). Real-time PCR was completed on buffy coat homogenates for expression of pro-inflammatory [CXCL8, IL-6, interferon gamma (IFNG), complement component 3 (C3), toll-like receptor 4 (TLR4), prostaglandin synthase 2 (PTGS2)] and anti-inflammatory [IL-10, superoxide dismutase 2 (SOD2), forkhead box P3 (FOXP3), peroxisome proliferator-activated receptor gamma (PPARG), mannose receptor C type 1 (MRC1), transforming growth factor ß (TGFß)] genes. After LPS treatment, gene expressions increased for CXCL8 (P = 0.0003), TLR4 (P = 0.004), SOD2 (P < 0.0001), and C3 (P = 0.003), while PPARG (P = 0.006) and MRC1 (P = 0.003) decreased. Overall, Dorset ewes had greater expression of TLR4 (P = 0.003), IL-10 (P = 0.045), PPARG (P = 0.002), FOXP3 (P = 0.001), and SOD2 (P = 0.0002), whereas Suffolk ewes had greater expression of IL-6 (P = 0.0007), IFNG (P = 0.02), PTGS2 (P = 0.0002), and C3 (P = 0.008). Suffolk ewes also displayed greater expression of IL-6 (P = 0.002) and C3 (P = 0.0004) in response to LPS. In conclusion, differences in gene expression may explain the enhanced inflammatory response in Suffolk ewes and may predispose Suffolk ewes to be more responsive to bacterial infection than Dorset ewes.


Subject(s)
Acute-Phase Reaction/veterinary , Behavior, Animal , Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Lipopolysaccharides/adverse effects , Sheep/immunology , Acute-Phase Reaction/chemically induced , Animals , Breeding , Cytokines/blood , Female , Hydrocortisone/blood , Leukocytes/immunology , Lipopolysaccharides/immunology , Sheep/classification , Sheep/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...