Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 22(11): 4, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36219145

ABSTRACT

Despite extensive study of early vision, new and unexpected mechanisms continue to be identified. We introduce a novel formal treatment of the psychophysics of image similarity, derived directly from straightforward connectivity patterns in early visual pathways. The resulting differential geometry formulation is shown to provide accurate and explanatory accounts of human perceptual similarity judgments. The direct formal predictions are then shown to be further improved via simple regression on human behavioral reports, which in turn are used to construct more elaborate hypothesized neural connectivity patterns. It is shown that the predictive approaches introduced here outperform a standard successful published measure of perceived image fidelity; moreover, the approach provides clear explanatory principles of these similarity findings.


Subject(s)
Vision, Ocular , Visual Pathways , Humans , Judgment , Photic Stimulation , Psychophysics , Visual Pathways/diagnostic imaging
2.
Genes (Basel) ; 13(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35885983

ABSTRACT

Well-documented evidence of the physiologic, genetic, and behavioral heterogeneity of schizophrenia suggests that diagnostic subtyping may clarify the underlying pathobiology of the disorder. Recent studies have demonstrated that increased inflammation may be a prominent feature of a subset of schizophrenics. However, these findings are inconsistent, possibly due to evaluating schizophrenics as a single group. In this study, we segregated schizophrenic patients into two groups ("Type 1", "Type 2") by their gene expression in the dorsolateral prefrontal cortex and explored biological differences between the subgroups. The study included post-mortem tissue samples that were sequenced in multiple, publicly available gene datasets using different sequencing methods. To evaluate the role of inflammation, the expression of genes in multiple components of neuroinflammation were examined: complement cascade activation, glial cell activation, pro-inflammatory mediator secretion, blood-brain barrier (BBB) breakdown, chemokine production and peripheral immune cell infiltration. The Type 2 schizophrenics showed widespread abnormal gene expression across all the neuroinflammation components that was not observed in Type 1 schizophrenics. Our results demonstrate the importance of separating schizophrenic patients into their molecularly defined subgroups and provide supporting evidence for the involvement of the immune-related pathways in a schizophrenic subset.


Subject(s)
Schizophrenia , Transcriptome , Dorsolateral Prefrontal Cortex , Genomics , Humans , Inflammation/genetics , Inflammation/metabolism , Prefrontal Cortex/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , Transcriptome/genetics
3.
Transl Psychiatry ; 9(1): 169, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31189874

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Transl Psychiatry ; 9(1): 147, 2019 05 09.
Article in English | MEDLINE | ID: mdl-31073119

ABSTRACT

Little is known about the molecular pathogenesis of schizophrenia, possibly because of unrecognized heterogeneity in diagnosed patient populations. We analyzed gene expression data collected from the dorsolateral prefrontal cortex (DLPFC) of post-mortem frozen brains of 189 adult diagnosed schizophrenics and 206 matched controls. Transcripts from 633 genes are differentially expressed in the DLPFC of schizophrenics as compared to controls at Bonferroni-corrected significance levels. Seventeen of those genes are differentially expressed at very high significance levels (<10-8 after Bonferroni correction). The findings were closely replicated in a dataset from an entirely unrelated source. The statistical significance of this differential gene expression is being driven by about half of the schizophrenic DLPFC samples, and importantly, it is the same half of the samples that is driving the significance for almost all of the differentially expressed transcripts. Weighted gene co-expression network analysis (WGCNA) of the schizophrenic subjects, based on the transcripts differentially expressed in the schizophrenics as compared to controls, divides them into two groups. "Type 1" schizophrenics have a DLPFC transcriptome similar to that of controls with only four differentially expressed genes identified. "Type 2" schizophrenics have a DLPFC transcriptome dramatically different from that of controls, with 3529 expression array probes to 3092 genes detecting transcripts that are differentially expressed at very high significance levels. These findings were re-tested and replicated in a separate independent cohort, using the RNAseq data from the DLPFC of an independent set of schizophrenics and control subjects. We suggest the hypothesis that these striking differences in DLPFC transcriptomes, identified and replicated in two populations, imply a fundamental biologic difference between these two groups of diagnosed schizophrenics, and we propose specific paths for further testing and expanding the hypothesis.


Subject(s)
Gene Regulatory Networks/genetics , Prefrontal Cortex/metabolism , Schizophrenia , Transcriptome/genetics , Cohort Studies , Humans , Schizophrenia/classification , Schizophrenia/genetics , Schizophrenia/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...