Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38771135

ABSTRACT

This study investigated the relationship between three respiratory support approaches on lung volume recruitment during the first two hours of postnatal life in preterm lambs. We estimated changes in lung aeration, measuring respiratory resistance and reactance by oscillometry at 5 Hz. We also measured intratracheal pressure in subsets of lambs. The first main finding is that sustained inflation (SI) applied noninvasively (Mask SI; n=7) or invasively (endotracheal tube, ETT SI; n=6) led to similar rapid lung volume recruitment (~6 min). In contrast, Mask continuous positive airway pressure (CPAP) without SI (n=6) resuscitation took longer (~30-45 min) to reach similar lung volume recruitment. The second main finding is that, in the first 15 min of postnatal life, the Mask CPAP without SI group closed their larynx during custom ventilator-driven expiration, leading to intratracheal positive end-expiratory pressure of ~17 cmH2O (instead of 8 cmH2O provided by the ventilator). In contrast, the Mask SI group used the larynx to limit inspiratory pressure to ~26 cmH2O (instead of 30 cmH2O provided by the ventilator). These different responses affected tidal volume, being larger in the Mask CPAP without SI group (8.4 ml/Kg, 6.7-9.3 IQR) compared to the Mask SI (5.0 ml/Kg, 4.4-5.2 IQR), and ETT SI groups (3.3 ml/Kg 2.6-3.7 IQR). Distinct physiological responses suggest that spontaneous respiratory activity of the larynx of preterm lambs at birth can uncouple pressure applied by the ventilator to that applied to the lung, leading to unpredictable lung pressure and tidal volumes delivery independently from the ventilator settings.

2.
Pediatr Res ; 93(6): 1528-1538, 2023 05.
Article in English | MEDLINE | ID: mdl-36030318

ABSTRACT

BACKGROUND: Low levels of insulin-like growth factor-1 (IGF-1) protein in preterm human infants are associated with bronchopulmonary dysplasia (BPD). We used our preterm lamb model of BPD to determine (1) dosage of recombinant human (rh) IGF-1 bound to binding protein-3 (IGFBP-3) to reach infant physiologic plasma levels; and (2) whether repletion of plasma IGF-1 improves pulmonary and cardiovascular outcomes. METHODS: Group 1: normal, unventilated lambs from 128 days gestation through postnatal age 5 months defined normal plasma levels of IGF-1. Group 2: continuous infusion of rhIGF-1/rhIGFBP-3 (0.5, 1.5, or 4.5 mg/kg/day; n = 2) for 3 days in mechanically ventilated (MV) preterm lambs determined that 1.5 mg/kg/day dosage attained physiologic plasma IGF-1 concentration of ~125 ng/mL, which was infused in four more MV preterm lambs. RESULTS: Group 1: plasma IGF-1 protein increased from ~75 ng/mL at 128 days gestation to ~220 ng/L at 5 months. Group 2: pilot study of the optimal dosage (1.5 mg/kg/day rhIGF-1/rhIGFBP-3) in six MV preterm lambs significantly improved some pulmonary and cardiovascular outcomes (p < 0.1) compared to six MV preterm controls. RhIGF-1/rhIGFBP-3 was not toxic to the liver, kidneys, or lungs. CONCLUSIONS: Three days of continuous iv infusion of rhIGF-1/rhIGFBP-3 at 1.5 mg/kg/day improved some pulmonary and cardiovascular outcomes without toxicity. IMPACT: Preterm birth is associated with rapid decreases in serum or plasma IGF-1 protein level. This decline adversely impacts the growth and development of the lung and cardiovascular system. For this pilot study, continuous infusion of optimal dosage of rhIGF-1/rhIGFBP-3 (1.5 mg/kg/day) to maintain physiologic plasma IGF-1 level of ~125 ng/mL during mechanical ventilation for 3 days statistically improved some structural and biochemical outcomes related to the alveolar formation that would favor improved gas exchange compared to vehicle-control. We conclude that 3 days of continuous iv infusion of rhIGF-1/rhIGFBP-3 improved some physiological, morphological, and biochemical outcomes, without toxicity, in mechanically ventilated preterm lambs.


Subject(s)
Bronchopulmonary Dysplasia , Premature Birth , Infant , Female , Humans , Animals , Infant, Newborn , Sheep , Insulin-Like Growth Factor I/metabolism , Bronchopulmonary Dysplasia/drug therapy , Pilot Projects , Infant, Premature , Recombinant Proteins/metabolism , Insulin-Like Growth Factor Binding Protein 3 , Sheep, Domestic
3.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L248-L262, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34009031

ABSTRACT

Invasive mechanical ventilation (IMV) and exposure to oxygen-rich gas during early postnatal life are contributing factors for long-term pulmonary morbidities faced by survivors of preterm birth and bronchopulmonary dysplasia. The duration of IMV that leads to long-term pulmonary morbidities is unknown. We compared two durations of IMV (3 h vs. 6 days) during the first 6-7 days of postnatal life in preterm lambs to test the hypothesis that minimizing the duration of IMV will improve long-term respiratory system mechanics and structural outcomes later in life. Moderately preterm (∼85% gestation) lambs were supported by IMV for either 3 h or 6 days before weaning from all respiratory support to become former preterm lambs. Respiratory system mechanics and airway reactivity were assessed monthly from 1 to 6 mo of chronological postnatal age by the forced oscillation technique. Quantitative morphological measurements were made for smooth muscle accumulation around terminal bronchioles and indices of alveolar formation. Minimizing IMV to 3 h led to significantly better (P < 0.05) baseline respiratory system mechanics and less reactivity to methacholine in the first 3 mo of chronological age (2 mo corrected age), significantly less (P < 0.05) accumulation of smooth muscle around peripheral resistance airways (terminal bronchioles), and significantly better (P < 0.05) alveolarization at the end of 5 mo corrected age compared with continuous IMV for 6 days. We conclude that limiting the duration of IMV following preterm birth of fetal lambs leads to better respiratory system mechanics and structural outcomes later in life.


Subject(s)
Lung/physiopathology , Respiration, Artificial/methods , Respiration , Respiratory Insufficiency/therapy , Animals , Animals, Newborn , Female , Male , Pregnancy , Sheep
4.
Physiol Meas ; 40(10): 105007, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31341100

ABSTRACT

OBJECTIVE: To provide a non-invasive approach to monitoring lung function in spontaneously breathing lambs, from birth to five months of life, by the forced oscillation technique (FOT). This report describes the experimental set-up, data processing, and identification of normal predicted values of resistance (Rrs) and reactance (Xrs) of the respiratory system, along with normal bronchodilator response for bronchial reversibility testing. APPROACH: Rrs and Xrs at 5, 11, and 19 Hz were measured monthly for five months in 20 normal term lambs that breathed spontaneously. In seven lambs, repeated measurements also were made within the first month of life (at 3, 7, 14, and 21 d of life). We determined the repeatability and reproducibility of the measurements and characterized the relationship between lung mechanics and age, sex, and body dimensions, using regression analysis, and measured changes in lung mechanics in response to inhaled bronchodilator. MAIN RESULTS: The measurements provided repeatable and reproducible data. Rrs decreased, whereas Xrs increased, with growth from birth through the first two months of life, after which no statistically significant differences were detected. We identified normal value equations for Rrs and Xrs and for each of the measured anthropometric variables. Respiratory system mechanics were not affected by the bronchodilator. SIGNIFICANCE: The FOT provides reliable non-invasive measurement of respiratory system mechanics in spontaneously breathing term lambs from birth to five months of age. The methods and normal reference values defined in this study will facilitate testing of the pathophysiological consequences of preterm birth and prolonged respiratory support on respiratory system mechanics.


Subject(s)
Parturition , Respiration , Respiratory Function Tests/methods , Respiratory Mechanics , Animals , Bronchodilator Agents/pharmacology , Female , Male , Respiration/drug effects , Respiratory Mechanics/drug effects , Sheep
5.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L816-L833, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30211655

ABSTRACT

Preterm birth and mechanical ventilation (MV) frequently lead to bronchopulmonary dysplasia, the histopathological hallmark of which is alveolar simplification. How developmental immaturity and ongoing injury, repair, and remodeling impact completion of alveolar formation later in life is not known, in part because of lack of suitable animal models. We report a new model, using former-preterm lambs, to test the hypothesis that they will have persistent alveolar simplification later in life. Moderately preterm lambs (~85% gestation) were supported by MV for ~6 days before being transitioned from all respiratory support to become former-preterm lambs. Results are compared with term control lambs that were not ventilated, and between males (M) and females (F). Alveolar simplification was quantified morphometrically and stereologically at 2 mo (4 M, 4 F) or 5 mo (4 M, 6 F) corrected postnatal age (cPNA) compared with unventilated, age-matched term control lambs (4 M, 4 F per control group). These postnatal ages in sheep are equivalent to human postnatal ages of 1-2 yr and ~6 yr, respectively. Multivariable linear regression results showed that former-preterm lambs at 2 or 5 mo cPNA had significantly thicker distal airspace walls ( P < 0.001 and P < 0.009, respectively), lower volume density of secondary septa ( P < 0.007 and P < 0.001, respectively), and lower radial alveolar count ( P < 0.003 and P < 0.020, respectively) compared with term control lambs. Sex-specific differences were not detected. We conclude that moderate preterm birth and MV for ~6 days impedes completion of alveolarization in former-preterm lambs. This new model provides the opportunity to identify underlying pathogenic mechanisms that may reveal treatment approaches.


Subject(s)
Bronchopulmonary Dysplasia/pathology , Lung/pathology , Animals , Animals, Newborn , Female , Gestational Age , Male , Models, Animal , Respiration, Artificial/methods , Sheep
6.
Pediatr Res ; 82(1): 93-100, 2017 07.
Article in English | MEDLINE | ID: mdl-28060793

ABSTRACT

BACKGROUND: Prematurity is often complicated by respiratory support, including invasive mechanical ventilation (IMV) and noninvasive support (NIS). Compared with IMV, NIS reduces injury to the lung and brain. Prematurity may also disrupt glomerular architecture. Whether NIS differentially affects glomerular architecture is incompletely understood. We hypothesized that IMV would lead to greater disruption of glomerular architecture than NIS. METHODS: This is a secondary analysis of kidneys from moderately preterm lambs delivered at ~131 d gestation (term ~150 d) that had antenatal steroid exposure and surfactant treatment before resuscitation by IMV. At ~3 h of age, half of the lambs were switched to NIS. Support was for 3 d or 21 d. Structural indices of glomerular architecture were quantified. RESULTS: The number of glomerular generations was unaffected by moderate preterm birth and respiratory support, either IMV or NIS. At 3 d and 21 d of IMV or NIS, glomerular capillary surface density was not different. Glomerular capillary surface density was significantly lower in the inner and outer cortex compared with unventilated gestation age-matched or postnatal age-matched reference lambs. CONCLUSION: Moderate preterm birth and invasive or noninvasive respiratory support decreases glomerular capillarization in the lamb kidney. This adverse effect on glomerular development may contribute to increased risk for adult-onset hypertension and renal dysfunction.


Subject(s)
Capillaries/physiology , Kidney Glomerulus/blood supply , Pulmonary Surfactants/therapeutic use , Respiration, Artificial , Animals , Animals, Newborn , Female , Hydrogen-Ion Concentration , Lung/physiopathology , Male , Oxygen/metabolism , Premature Birth , Respiration , Risk , Sheep , Sheep, Domestic , Time Factors
7.
Pediatr Res ; 80(5): 719-728, 2016 11.
Article in English | MEDLINE | ID: mdl-27429203

ABSTRACT

BACKGROUND: Preterm birth and respiratory support with invasive mechanical ventilation frequently leads to bronchopulmonary dysplasia (BPD). A hallmark feature of BPD is alveolar simplification. For our preterm lamb model of BPD, invasive mechanical ventilation is associated with postnatal feeding intolerance (reduced nutrition) and sedation. In contrast, preterm lambs managed by noninvasive support (NIS) have normal alveolar formation, appropriate postnatal nutrition, and require little sedation. We used the latter, positive-outcome group to discriminate the contribution of reduced nutrition vs. sedation on alveolar simplification. We hypothesized that, restricted nutrition, but not sedation with pentobarbital, contributes to impaired indices of alveolar formation in preterm lambs managed by NIS. METHODS: Preterm lambs managed by NIS for 21d were randomized into three groups: NIS control, NIS plus restricted nutrition, and NIS plus excess sedation with pentobarbital. We quantified morphological and biochemical indices of alveolar formation, as well as mesenchymal cell apoptosis and proliferation. RESULTS: Restricted nutrition impaired morphological and biochemical indices of alveolar formation, and reduced mesenchymal cell apoptosis and proliferation. Excess sedation with pentobarbital did not alter these indices, although mesenchymal cell apoptosis was less. CONCLUSION: Our results demonstrate that restricted nutrition, but not excess sedation, contributes to impaired alveolar formation during the evolution of BPD in chronically ventilated preterm lambs.


Subject(s)
Animal Nutritional Physiological Phenomena , Bronchopulmonary Dysplasia/pathology , Pentobarbital/administration & dosage , Pulmonary Alveoli/pathology , Animals , Animals, Newborn , Apoptosis , Caloric Restriction , Cell Proliferation , Diet , Female , Gestational Age , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/adverse effects , Lung/pathology , Male , Mesenchymal Stem Cells/metabolism , Nutritional Status , Pentobarbital/adverse effects , Random Allocation , Respiration, Artificial/adverse effects , Sheep , Sheep, Domestic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...