Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 4604, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25087924

ABSTRACT

Negative strain-rate sensitivity due to dynamic strain aging in Aluminium-5XXX alloys leads to reduced ductility and plastic instabilities at room temperature, inhibiting application of these alloys in many forming processes. Here a hierarchical multiscale model is presented that uses (i) quantum and atomic information on solute energies and motion around a dislocation core, (ii) dislocation models to predict the effects of solutes on dislocation motion through a dislocation forest, (iii) a thermo-kinetic constitutive model that faithfully includes the atomistic and dislocation scale mechanisms and (iv) a finite-element implementation, to predict the ductility as a function of temperature and strain rate in AA5182. The model, which contains no significant adjustable parameters, predicts the observed steep drop in ductility at room temperature, which can be directly attributed to the atomistic aging mechanism. On the basis of quantum inputs, this multiscale theory can be used in the future to design new alloys with higher ductility.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(1 Pt 1): 011701, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17358167

ABSTRACT

The application of a sufficiently strong strain perpendicular to the pitch axis of a monodomain cholesteric elastomer unwinds the cholesteric helix. Previous theoretical analyses of this transition ignored the effects of Frank elasticity which we include here. We find that the strain needed to unwind the helix is reduced because of the Frank penalty and the cholesteric state becomes metastable above the transition. We consider in detail a previously proposed mechanism by which the topologically stable helical texture is removed in the metastable state: namely, by the nucleation of twist disclination loops in the plane perpendicular to the pitch axis. We present an approximate calculation of the barrier energy for this nucleation process which neglects possible spatial variation of the strain fields in the elastomer, as well as a more accurate calculation based on a finite-element modeling of the elastomer.

3.
J Chem Phys ; 120(24): 11948-64, 2004 Jun 22.
Article in English | MEDLINE | ID: mdl-15268230

ABSTRACT

We describe a series of molecular dynamics computations that reveal an intimate connection at the atomic scale between difference stress (which resists stretches) and pressure (which resists volume changes) in an idealized elastomer, in contrast to the classical theory of rubber elasticity. Our simulations idealize the elastomer as a "pearl necklace," in which the covalent bonds are stiff linear springs, while nonbonded atoms interact through a Lennard-Jones potential with energy epsilon(LJ) and radius sigma(LJ). We calculate the difference stress t(11)-(t(22)+t(33))/2 and mean stress (t(11)+t(22)+t(33))/3 induced by a constant volume extension in the x(1) direction, as a function of temperature T and reduced density rho(*)=Nsigma(IJ) (3)/nu. Here, N is the number of atoms in the simulation cell and nu is the cell volume. Results show that for rho(*)<1, the difference stress is purely entropic and is in good agreement with the classical affine network model of rubber elasticity, which neglects nonbonded interactions. However, data presented by van Krevelen [Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), p. 79] indicate that rubber at standard conditions corresponds to rho(*)=1.2. For rho(*)>1, the system is entropic for kT/epsilon(LJ)>2, but at lower temperatures the difference stress contains an additional energy component, which increases as rho(*) increases and temperature decreases. Finally, the model exhibits a glass transition for rho(*)=1.2 and kT/epsilon(LJ) approximately 2. The atomic-scale processes responsible for generating stress are explored in detail. Simulations demonstrate that the repulsive portion of the Lennard-Jones potential provides a contribution sigma(nbr)>0 to the difference stress, the attractive portion provides sigma(nba) approximately 0, while the covalent bonds provide sigma(b)<0. In contrast, their respective contributions to the mean stress satisfy Pi(nbr)<0, Pi(nba)>0, and Pi(b)<0. Analytical calculations, together with simulations, demonstrate that mean and difference stresses are related by sigma(nbr)=-APi(nbr)P(2)(theta(b)), sigma(b)=BPi(b)P(2)(theta(b)), where P(2)(theta(b)) is a measure of the anisotropy of the orientation of the covalent bonds, and A and B are coefficients that depend weakly on rho(*) and temperature. For high values of rho(*), we find that [sigma(nbr)]>>[sigma(b)], and in this regime our model predicts behavior that is in good agreement with experimental data of D.L. Quested et al. [J. Appl. Phys. 52, 5977 (1981)] for the influence of pressure on the difference stress induced by stretching solithane.

SELECTION OF CITATIONS
SEARCH DETAIL
...