Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 40(1): 66-77, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24412613

ABSTRACT

Acute intestinal inflammation involves early accumulation of neutrophils (PMNs) followed by either resolution or progression to chronic inflammation. Based on recent evidence that mucosal metabolism influences disease outcomes, we hypothesized that transmigrating PMNs influence the transcriptional profile of the surrounding mucosa. Microarray studies revealed a cohort of hypoxia-responsive genes regulated by PMN-epithelial crosstalk. Transmigrating PMNs rapidly depleted microenvironmental O2 sufficiently to stabilize intestinal epithelial cell hypoxia-inducible factor (HIF). By utilizing HIF reporter mice in an acute colitis model, we investigated the relative contribution of PMNs and the respiratory burst to "inflammatory hypoxia" in vivo. CGD mice, lacking a respiratory burst, developed accentuated colitis compared to control, with exaggerated PMN infiltration and diminished inflammatory hypoxia. Finally, pharmacological HIF stabilization within the mucosa protected CGD mice from severe colitis. In conclusion, transcriptional imprinting by infiltrating neutrophils modulates the host response to inflammation, via localized O2 depletion, resulting in microenvironmental hypoxia and effective inflammatory resolution.


Subject(s)
Colitis/immunology , Hypoxia/immunology , Mucous Membrane/metabolism , Neutrophils/pathology , Animals , Cell Communication , Cell Movement , Cells, Cultured , Cellular Microenvironment , Colitis/chemically induced , Colon/pathology , Disease Models, Animal , Hypoxia/chemically induced , Hypoxia-Inducible Factor 1/metabolism , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Mucous Membrane/pathology , NADPH Oxidase 2 , NADPH Oxidases/genetics , Oxidative Stress , Oxygen/metabolism , Protein Stability/drug effects , Transendothelial and Transepithelial Migration
2.
J Immunol ; 192(3): 1267-76, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24367025

ABSTRACT

Cytokines secreted at sites of inflammation impact the onset, progression, and resolution of inflammation. In this article, we investigated potential proresolving mechanisms of IFN-γ in models of inflammatory bowel disease. Guided by initial microarray analysis, in vitro studies revealed that IFN-γ selectively induced the expression of IL-10R1 on intestinal epithelia. Further analysis revealed that IL-10R1 was expressed predominantly on the apical membrane of polarized epithelial cells. Receptor activation functionally induced canonical IL-10 target gene expression in epithelia, concomitant with enhanced barrier restitution. Furthermore, knockdown of IL-10R1 in intestinal epithelial cells results in impaired barrier function in vitro. Colonic tissue isolated from murine colitis revealed that levels of IL-10R1 and suppressor of cytokine signaling 3 were increased in the epithelium and coincided with increased tissue IFN-γ and IL-10 cytokines. In parallel, studies showed that treatment of mice with rIFN-γ was sufficient to drive expression of IL-10R1 in the colonic epithelium. Studies of dextran sodium sulfate colitis in intestinal epithelial-specific IL-10R1-null mice revealed a remarkable increase in disease susceptibility associated with increased intestinal permeability. Together, these results provide novel insight into the crucial and underappreciated role of epithelial IL-10 signaling in the maintenance and restitution of epithelial barrier and of the temporal regulation of these pathways by IFN-γ.


Subject(s)
Epithelial Cells/metabolism , Interferon-gamma/pharmacology , Interleukin-10 Receptor alpha Subunit/biosynthesis , Interleukin-10/physiology , Intestinal Mucosa/metabolism , Animals , Cell Line , Cell Polarity , Colitis/chemically induced , Colitis/metabolism , Cytokines/biosynthesis , Cytokines/genetics , Dextran Sulfate/toxicity , Dextrans/pharmacokinetics , Epithelial Cells/drug effects , Epithelial Cells/ultrastructure , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/pharmacokinetics , Gene Expression Regulation , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interferon-gamma/physiology , Interleukin-10 Receptor alpha Subunit/genetics , Mice , Mice, Inbred C57BL , Permeability , Recombinant Proteins/pharmacology , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/biosynthesis , Suppressor of Cytokine Signaling Proteins/genetics
3.
Proc Natl Acad Sci U S A ; 110(49): 19820-5, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24248342

ABSTRACT

Mucosal surfaces of the lower gastrointestinal tract are subject to frequent, pronounced fluctuations in oxygen tension, particularly during inflammation. Adaptive responses to hypoxia are orchestrated largely by the hypoxia-inducible transcription factors (HIFs). As HIF-1α and HIF-2α are coexpressed in mucosal epithelia that constitute the barrier between the lumen and the underlying immune milieu, we sought to define the discrete contribution of HIF-1 and HIF-2 transactivation pathways to intestinal epithelial cell homeostasis. The present study identifies creatine kinases (CKs), key metabolic enzymes for rapid ATP generation via the phosphocreatine-creatine kinase (PCr/CK) system, as a unique gene family that is coordinately regulated by HIF. Cytosolic CKs are expressed in a HIF-2-dependent manner in vitro and localize to apical intestinal epithelial cell adherens junctions, where they are critical for junction assembly and epithelial integrity. Supplementation with dietary creatine markedly ameliorated both disease severity and inflammatory responses in colitis models. Further, enzymes of the PCr/CK metabolic shuttle demonstrate dysregulated mucosal expression in a subset of ulcerative colitis and Crohn disease patients. These findings establish a role for HIF-regulated CK in epithelial homeostasis and reveal a fundamental link between cellular bioenergetics and mucosal barrier.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Cell Hypoxia/physiology , Colitis/metabolism , Creatine Kinase/metabolism , Creatine/metabolism , Gene Expression Regulation, Enzymologic/physiology , Signal Transduction/physiology , Analysis of Variance , Blotting, Western , Chromatography, High Pressure Liquid , DNA Primers/genetics , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Regulation, Enzymologic/genetics , Gene Knockdown Techniques , Humans , Immunoprecipitation , Polymerase Chain Reaction
4.
J Immunol ; 190(1): 392-400, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23209320

ABSTRACT

A deeper understanding of the mechanisms that control responses to inflammation is critical to the development of effective therapies. We sought to define the most proximal regulators of the Cullin (Cul)-RING ligases, which play a central role in the stabilization of NF-κB and hypoxia-inducible factor (HIF). In these studies, we identify the human deneddylase-1 (SENP8) as a key regulator of Cul neddylation response in vitro and in vivo. Using human microvascular endothelial cells (HMECs), we examined inflammatory responses to LPS or TNF-α by assessing Cul neddylation status, NF-κB and HIF-1α stabilization, and inflammatory cytokine secretion. HMECs with an intact neddylation pathway showed a time-dependent induction of Cul-1 neddylation, nuclear translocation of NF-κB, stabilization of HIF-1α, and increased NF-κB/HIF-α promoter activity in response to LPS. HMECs lacking SENP8 were unable to neddylate Cul-1 and subsequently were unable to activate NF-κB or HIF-1α. Pharmacological targeting of neddylation (MLN4924) significantly abrogated NF-κB responses, induced HIF-1α promoter activity, and reduced secretion of TNF-α-elicited proinflammatory cytokines. MLN4924 stabilized HIF and abrogated proinflammatory responses while maintaining anti-inflammatory IL-10 responses in vivo following LPS administration. These studies identify SENP8 as a proximal regulator of Cul neddylation and provide an important role for SENP8 in fine-tuning the inflammatory response. Moreover, our findings provide feasibility for therapeutic targeting of the Culs during inflammation.


Subject(s)
Cullin Proteins/physiology , Endopeptidases/physiology , Endothelium, Vascular/enzymology , Endothelium, Vascular/immunology , Inflammation Mediators/physiology , Ubiquitins/physiology , Cells, Cultured , Cullin Proteins/metabolism , Endopeptidases/deficiency , Endopeptidases/genetics , Endothelium, Vascular/cytology , Enzyme Precursors/metabolism , Enzyme Precursors/physiology , Human Umbilical Vein Endothelial Cells , Humans , Microcirculation/immunology , NEDD8 Protein , Ubiquitins/metabolism
5.
J Immunol ; 186(11): 6505-14, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21515785

ABSTRACT

Tissues of the mucosa are lined by an epithelium that provides barrier and transport functions. It is now appreciated that inflammatory responses in inflammatory bowel diseases are accompanied by striking shifts in tissue metabolism. In this paper, we examined global metabolic consequences of mucosal inflammation using both in vitro and in vivo models of disease. Initial analysis of the metabolic signature elicited by inflammation in epithelial models and in colonic tissue isolated from murine colitis demonstrated that levels of specific metabolites associated with cellular methylation reactions are significantly altered by model inflammatory systems. Furthermore, expression of enzymes central to all cellular methylation, S-adenosylmethionine synthetase and S-adenosylhomocysteine hydrolase, are increased in response to inflammation. Subsequent studies showed that DNA methylation is substantially increased during inflammation and that epithelial NF-κB activity is significantly inhibited following treatment with a reversible S-adenosylhomocysteine hydrolase inhibitor, DZ2002. Finally, these studies demonstrated that inhibition of cellular methylation in a murine model of colitis results in disease exacerbation while folate supplementation to promote methylation partially ameliorates the severity of murine colitis. Taken together, these results identify a global change in methylation, which during inflammation, translates to an overall protective role in mucosal epithelia.


Subject(s)
Colitis/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Metabolomics/methods , Adenine/analogs & derivatives , Adenine/pharmacology , Adenosylhomocysteinase/genetics , Adenosylhomocysteinase/metabolism , Animals , Blotting, Western , Butyrates/pharmacology , Cell Line, Tumor , Colitis/genetics , Colon/drug effects , Colon/metabolism , Colon/pathology , DNA Methylation/drug effects , Dextran Sulfate/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Profiling/methods , HeLa Cells , Humans , Inflammation/genetics , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Intestinal Mucosa/pathology , Magnetic Resonance Spectroscopy , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Methylation/drug effects , Mice , Mice, Inbred C57BL , Mucositis/genetics , Mucositis/metabolism , NF-kappa B/metabolism , Reverse Transcriptase Polymerase Chain Reaction
6.
J Immunol ; 186(3): 1790-8, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21199896

ABSTRACT

Numerous studies have revealed that hypoxia and inflammation occur coincidentally in mucosal disorders, such as inflammatory bowel disease. During inflammation, epithelial-expressed hypoxia-inducible factor (HIF) serves an endogenously protective function. In this study, we sought to explore how mucosal immune responses influence HIF-dependent end points. Guided by a screen of relevant inflammatory mediators, we identified IFN-γ as a potent repressor of HIF-dependent transcription in human intestinal epithelial cells. Analysis of HIF levels revealed that HIF-1ß, but not HIF-1α, is selectively repressed by IFN-γ in a JAK-dependent manner. Cloning and functional analysis of the HIF-1ß promoter identified a prominent region for IFN-γ-dependent repression. Further studies revealed that colonic IFN-γ and HIF-1ß levels were inversely correlated in a murine colitis model. Taken together, these studies demonstrated that intestinal epithelial HIF is attenuated by IFN-γ through transcriptional repression of HIF-1ß. These observations are relevant to the pathophysiology of colitis (i.e., that loss of HIF signaling during active inflammation may exacerbate disease pathogenesis).


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/antagonists & inhibitors , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Colitis/immunology , Interferon-gamma/physiology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Repressor Proteins/physiology , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/physiology , Caco-2 Cells , Cell Line, Tumor , Cells, Cultured , Cloning, Molecular , Colitis/enzymology , Colitis/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Female , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/physiology , Intestinal Mucosa/enzymology , Mice , Mice, Inbred C57BL , Procollagen-Proline Dioxygenase/physiology , Signal Transduction/immunology
7.
Proc Natl Acad Sci U S A ; 107(32): 14298-303, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20660763

ABSTRACT

Resolvin-E1 (RvE1) has been demonstrated to promote inflammatory resolution in numerous disease models. Given the importance of epithelial cells to coordination of mucosal inflammation, we hypothesized that RvE1 elicits an epithelial resolution signature. Initial studies revealed that the RvE1-receptor (ChemR23) is expressed on intestinal epithelial cells (IECs) and that microarray profiling of cells exposed to RvE1 revealed regulation of inflammatory response gene expression. Notably, RvE1 induced intestinal alkaline phosphatase (ALPI) expression and significantly enhanced epithelial ALPI enzyme activity. One role recently attributed to ALPI is the detoxification of bacterial LPS. In our studies, RvE1-exposed epithelia detoxified LPS (assessed by attenuation of NF-kappaB signaling). Furthermore, in epithelial-bacterial interaction assays, we determined that ALPI retarded the growth of Escherichia coli. To define these features in vivo, we used a murine dextran sulfate sodium (DSS) model of colitis. Compared with vehicle controls, administration of RvE1 resulted in significant improvement of disease activity indices (e.g., body weight, colon length) concomitant with increased ALPI expression in the intestinal epithelium. Moreover, inhibition of ALPI activity resulted in increased severity of colitis in DSS-treated animals and partially abrogated the protective influence of RvE1. Together, these data implicate a previously unappreciated role for ALPI in RvE1-mediated inflammatory resolution.


Subject(s)
Alkaline Phosphatase/genetics , Eicosapentaenoic Acid/analogs & derivatives , Inflammation/prevention & control , Intestinal Mucosa/enzymology , Lipopolysaccharides/antagonists & inhibitors , Animals , Colitis/prevention & control , Eicosapentaenoic Acid/pharmacology , Epithelial Cells/chemistry , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Mice , Mice, Inbred C57BL , Receptors, Cell Surface/analysis , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...