Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Aerosol Sci Technol ; 57(5): 450-466, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37969359

ABSTRACT

Puff Bar™, one of the latest designs of e-cigarettes, heats a mixture of liquid using a battery-powered coil at certain temperatures to emit aerosol. This study presents a mass-based characterization of emissions from seven flavors of Puff Bar™ devices by aerosolizing with three puff topographies [(puff volume: 55 < 65 < 75-mL) within 4-seconds at 30-seconds interval]. We evaluated the effects of puff topographies on heating temperatures; characterized particles using a cascade impactor; and measured volatile carbonyl compounds (VCCs). Modeled dosimetry and calculated mass median aerodynamic diameters (MMADs) were used to estimate regional, total respiratory deposition of the inhaled aerosol and exhaled fractions that could pose secondhand exposure risk. Temperatures of Puff Bar™ e-liquids increased with increasing puff volumes: 55mL (116.6 °C), 65 mL (128.3 °C), and 75mL (168.9 °C). Flavor types significantly influenced MMADs, total mass of particles, and VCCs (µg/puff: 2.15-2.30) in Puff Bar™ emissions (p < 0.05). Increasing puff volume (mL:55 < 65 < 75) significantly increased total mass (mg/puff: 4.6 < 5.6 < 6.2) of particles without substantially changing MMADs (~1µm:1.02~0.99~0.98). Aerosol emissions were estimated to deposit in the pulmonary region of e-cigarette user (41-44%), which could have toxicological importance. More than 2/3 (67-77%) of inhaled particles were estimated to be exhaled by users, which could affect bystanders. The VCCs measured contained carcinogens-formaldehyde (29.6%) and acetaldehyde (16.4%)-as well as respiratory irritants: acetone (23.9%), isovaleraldehyde (14.5%), and acrolein (4.9%). As Puff Bar™ emissions contain respirable particles and harmful chemicals, efforts should be made to minimize exposures, especially in indoor settings where people (including vulnerable populations) spend most of their life-time.

2.
Article in English | MEDLINE | ID: mdl-35982992

ABSTRACT

Fused filament fabrication three-dimensional (FFF 3-D) printing is thought to be environmentally sustainable; however, significant amounts of waste can be generated from this technology. One way to improve its sustainability is via distributed recycling of plastics in homes, schools, and libraries to create feedstock filament for printing. Risks from exposures incurred during recycling and reuse of plastics has not been incorporated into life cycle assessments. This study characterized contaminant releases from virgin (unextruded) and recycled plastics from filament production through FFF 3-D printing. Waste polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) plastics were recycled to create filament; virgin PLA, ABS, high and low density polyethylenes, high impact polystyrene, and polypropylene pellets were also extruded into filament. The release of particles and chemicals into school classrooms was evaluated using standard industrial hygiene methodologies. All tasks released particles that contained hazardous metals (e.g., manganese) and with size capable of depositing in the gas exchange region of the lung, i.e., granulation of waste PLA and ABS (667 to 714 nm) and filament making (608 to 711 nm) and FFF 3-D printing (616 to 731 nm) with waste and virgin plastics. All tasks released vapors, including respiratory irritants and potential carcinogens (benzene and formaldehyde), mucus membrane irritants (acetone, xylenes, ethylbenzene, and methyl methacrylate), and asthmagens (styrene, multiple carbonyl compounds). These data are useful for incorporating risks of exposure to hazardous contaminants in future life cycle evaluations to demonstrate the sustainability and circular economy potential of FFF 3-D printing in distributed spaces.

3.
Regul Toxicol Pharmacol ; 133: 105198, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35659913

ABSTRACT

Material jetting and vat photopolymerization additive manufacturing (AM) processes use liquid resins to build objects. These resins can contain skin irritants and/or sensitizers but product safety data sheets (SDSs) might not declare all ingredients. We characterized elemental and organic skin irritants and sensitizers present in 39 commercial products; evaluated the influence of resin manufacturer, system, color, and AM process type on the presence of irritants and sensitizers; and compared product SDSs to results. Among all products, analyses identified 23 irritant elements, 54 irritant organic substances, 22 sensitizing elements, and 23 sensitizing organic substances; SDSs listed 3, 9, 4, and 6 of these ingredients, respectively. Per product, the number and total mass (an indicator of potential dermal loading) of ingredients varied: five to 17 irritant elements (8.32-4756.65 mg/kg), one to 17 irritant organics (3273 to 356,000 mg/kg), four to 17 sensitizing elements (8.27-4755.63 mg/kg), and one to seven sensitizing organics (15-382,170 mg/kg). Median numbers and concentrations of irritants and sensitizers were significantly influenced by resin system and AM process type. The presence of undeclared irritants and sensitizers in these resins supports the need for more complete information on product SDSs for comprehensive dermal risk assessments.


Subject(s)
Consumer Product Safety , Irritants , Curing Lights, Dental , Irritants/toxicity , Light-Curing of Dental Adhesives , Risk Assessment
4.
Buildings (Basel) ; 12(8)2022 Aug.
Article in English | MEDLINE | ID: mdl-37961074

ABSTRACT

Vat photopolymerization (VP), a type of additive manufacturing process that cures resin to build objects, can emit potentially hazardous particles and gases. We evaluated two VP technologies, stereolithography (SLA) and digital light processing (DLP), in three separate environmental chambers to understand task-based impacts on indoor air quality. Airborne particles, total volatile organic compounds (TVOCs), and/or specific volatile organic compounds (VOCs) were monitored during each task to evaluate their exposure potential. Regardless of duration, all tasks released particles and organic gases, though concentrations varied between SLA and DLP processes and among tasks. Maximum particle concentrations reached 1200 #/cm3 and some aerosols contained potentially hazardous elements such as barium, chromium, and manganese. TVOC concentrations were highest for the isopropyl alcohol (IPA) rinsing, soaking, and drying post-processing tasks (up to 36.8 mg/m3), lowest for the resin pouring pre-printing, printing, and resin recovery post-printing tasks (up to 0.1 mg/m3), and intermediate for the curing post-processing task (up to 3 mg/m3). Individual VOCs included, among others, the potential occupational carcinogen acetaldehyde and the immune sensitizer 2-hydroxypropyl methacrylate (pouring, printing, recovery, and curing tasks). Careful consideration of all tasks is important for the development of strategies to minimize indoor air pollution and exposure potential from VP processes.

5.
J Chem Health Saf ; 28(6): 444-456, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-35979087

ABSTRACT

Material extrusion-type fused filament fabrication (FFF) 3-D printing is a valuable tool for education. During FFF 3-D printing, thermal degradation of the polymer releases small particles and chemicals, many of which are hazardous to human health. In this study, particle and chemical emissions from 10 different filaments made from virgin (never printed) and recycled polymers were used to print the same object at the polymer manufacturer's recommended nozzle temperature ("normal") and at a temperature higher than recommended ("hot") to simulate the real-world scenarios of a person intentionally or unknowingly printing on a machine with a changed setting. Emissions were evaluated in a college teaching laboratory using standard sampling and analytical methods. From mobility sizer measurements, particle number-based emission rates were 81 times higher; the proportion of ultrafine particles (diameter <100 nm) were 4% higher, and median particle sizes were a factor of 2 smaller for hot-temperature prints compared with normal-temperature prints (all p-values <0.05). There was no difference in emission characteristics between recycled and virgin acrylonitrile butadiene styrene and polylactic acid polymer filaments. Reducing contaminant release from FFF 3-D printers in educational settings can be achieved using the hierarchy of controls: (1) elimination/substitution (e.g., training students on principles of prevention-through-design, limiting the use of higher emitting polymer when possible); (2) engineering controls (e.g., using local exhaust ventilation to directly remove contaminants at the printer or isolating the printer from students); (3) administrative controls such as password protecting printer settings and establishing and enforcing adherence to a standard operating procedure based on a proper risk assessment for the setup and use (e.g., limiting the use of temperatures higher than those specified for the filaments used); and (4) maintenance of printers.

6.
J Chem Health Saf ; 28(3): 190-200, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-35979329

ABSTRACT

The literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO2) concentrations were monitored in real-time. Particle emission rate values (no./min) were as follows: ABS (1.7 × 1011 to 7.7 × 1013), PC (5.2 × 1011 to 3.6 × 1013), Ultem (5.7 × 1012 to 3.1 × 1013), PPS (4.6 × 1011 to 6.2 × 1012), PSU (1.5 × 1012 to 3.4 × 1013), and PESU (2.0 to 5.0 × 1013). For print jobs where the mass of extruded polymer was known, particle yield values (g-1 extruded) were as follows: ABS (4.5 × 108 to 2.9 × 1011), PC (1.0 × 109 to 1.7 × 1011), PSU (5.1 × 109 to 1.2 × 1011), and PESU (0.8 × 1011 to 1.7 × 1011). TVOC emission yields ranged from 0.005 mg/g extruded (PESU) to 0.7 mg/g extruded (ABS). The use of wall-mounted exhaust ventilation fans was insufficient to completely remove airborne particulate and TVOC from the print room. Real-time CO monitoring was not a useful marker of particulate and TVOC emission profiles for Ultem, PPS, or PSU. Average CO2 and particle concentrations were moderately correlated (r s = 0.76) for PC polymer. Extrusion of ABS, PC, and four high-melt-temperature polymers by LFAM machines released particulate and TVOC at levels that could warrant consideration of engineering controls. LFAM particle emission yields for some polymers were similar to those of common desktop-scale 3-D printers.

7.
J Chem Health Saf ; 28(4): 268-278, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-36147482

ABSTRACT

Extrusion of high-melt-temperature polymers on large-format additive manufacturing (LFAM) machines releases particles and gases, though there is no data describing their physical and chemical characteristics. Emissions from two LFAM machines were monitored during extrusion of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) polymers as well as high-melt-temperature Ultem (poly(ether imide)), polysulfone (PSU), poly(ether sulfone) (PESU), and polyphenylene sulfide (PPS) polymers. Filter samples of particles were collected for quantification of elements and bisphenol A and S (BPA, BPS) and visualization of morphology. Individual gases were quantified on substance-specific media. Aerosol sampling demonstrated that concentrations of elements were generally low for all polymers, with a maximum of 1.6 mg/m3 for iron during extrusion of Ultem. BPA, an endocrine disruptor, was released into air during extrusion of PC (range: 0.4 ± 0.1 to 21.3 ± 5.3 µg/m3). BPA and BPS (also an endocrine disruptor) were released into air during extrusion of PESU (BPA, 2.0-8.7 µg/m3; BPS, 0.03-0.07 µg/m3). Work surfaces and printed parts were contaminated with BPA (<8-587 ng/100 cm2) and BPS (<0.22-2.5 ng/100 cm2). Gas-phase sampling quantified low levels of respiratory irritants (phenol, SO2, toluene, xylenes), possible or known asthmagens (caprolactam, methyl methacrylate, 4-oxopentanal, styrene), and possible occupational carcinogens (benzene, formaldehyde, acetaldehyde) in air. Characteristics of particles and gases released by high-melt-temperature polymers during LFAM varied, which indicated the need for polymer-specific exposure and risk assessments. The presence of BPA and BPS on surfaces revealed a previously unrecognized source of dermal exposure for additive manufacturing workers using PC and PESU polymers.

8.
Toxicol Appl Pharmacol ; 408: 115281, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33065155

ABSTRACT

Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical (.OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur.


Subject(s)
Dust , Hydraulic Fracking , Sand , Animals , Cell Survival , Comet Assay , Inflammation , Interleukin-6 , Mice , RAW 264.7 Cells , Reactive Oxygen Species , Tumor Necrosis Factor-alpha
9.
Am J Reprod Immunol ; 83(4): e13221, 2020 04.
Article in English | MEDLINE | ID: mdl-31943498

ABSTRACT

PROBLEM: As more women join the skilled-trade workforce, the effects of workplace exposures on pregnancy need to be explored. This study aims to identify the effects of mild steel and stainless steel welding fume exposures on cultured placental trophoblast cells. METHOD OF STUDY: Welding fumes (mild steel and stainless steel) were generously donated by Lincoln Electric. Electron microscopy was used to characterize welding fume particle size and the ability of particles to enter extravillous trophoblast cells (HTR-8/SVneo). Cellular viability, free radical production, cytokine production, and ability of cells to maintain invasive properties were analyzed, respectively, by WST-1, electron paramagnetic resonance, DCFH-DA, V-plex MULTI-SPOT assay system, and a matrix gel invasion assay. RESULTS: For all three welding fume types, average particle size was <210 nm. HTR-8/SVneo cells internalized welding particles, and nuclear condensation was observed. Cellular viability was significantly decreased at the high dose of 100 µg/mL for all three welding fumes, and stainless steel generated the greatest production of the hydroxyl radical, and intracellular reactive oxygen species. Production of the cytokines IL-1ß and TNFα were not observed in response to welding fume exposure, but IL-6 and IL-8 were. Finally, the invasive capability of cells was decreased upon exposure to both mild steel and stainless steel welding fumes. CONCLUSION: Welding fumes are cytotoxic to extravillous trophoblasts, as is evident by the production of free radicals, pro-inflammatory cytokines, and the observed decrease in invasive capabilities.


Subject(s)
Air Pollutants/adverse effects , Occupational Exposure/adverse effects , Trophoblasts/pathology , Cell Survival , Cells, Cultured , Cytokines/metabolism , Female , Humans , Inflammation Mediators/metabolism , Oxidative Stress , Pregnancy , Pregnancy Trimester, First , Reactive Oxygen Species/metabolism , Stainless Steel , Welding
10.
Inhal Toxicol ; 31(13-14): 432-445, 2019.
Article in English | MEDLINE | ID: mdl-31874579

ABSTRACT

Objective: Fused filament fabrication "3-dimensional (3-D)" printing has expanded beyond the workplace to 3-D printers and pens for use by children as toys to create objects.Materials and methods: Emissions from two brands of toy 3-D pens and one brand of toy 3-D printer were characterized in a 0.6 m3 chamber (particle number, size, elemental composition; concentrations of individual and total volatile organic compounds (TVOC)). The effects of print parameters on these emission metrics were evaluated using mixed-effects models. Emissions data were used to model particle lung deposition and TVOC exposure potential.Results: Geometric mean particle yields (106-1010 particles/g printed) and sizes (30-300 nm) and TVOC yields (

Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Play and Playthings , Printing, Three-Dimensional , Volatile Organic Compounds/analysis , Child , Humans , Particle Size
11.
J Toxicol Environ Health A ; 82(11): 645-663, 2019.
Article in English | MEDLINE | ID: mdl-31290376

ABSTRACT

Corian®, a solid-surface composite (SSC), is composed of alumina trihydrate and acrylic polymer. The aim of the present study was to examine the pulmonary toxicity attributed to exposure to SSC sawing dust. Male mice were exposed to either phosphate buffer saline (PBS, control), 62.5, 125, 250, 500, or 1000 µg of SSC dust, or 1000 µg silica (positive control) via oropharyngeal aspiration. Body weights were measured for the duration of the study. Bronchoalveolar lavage fluid (BALF) and tissues were collected for analysis at 1 and 14 days post-exposure. Enhanced-darkfield and histopathologic analysis was performed to assess particle distribution and inflammatory responses. BALF cells and inflammatory cytokines were measured. The geometric mean diameter of SSC sawing dust following suspension in PBS was 1.25 µm. BALF analysis indicated that lactate dehydrogenase (LDH) activity, inflammatory cells, and pro-inflammatory cytokines were significantly elevated in the 500 and 1000 µg SSC exposure groups at days 1 and 14, suggesting that exposure to these concentrations of SSC induced inflammatory responses, in some cases to a greater degree than the silica positive control. Histopathology indicated the presence of acute alveolitis at all doses at day 1, which was largely resolved by day 14. Alveolar particle deposition and granulomatous mass formation were observed in all exposure groups at day 14. The SSC particles were poorly cleared, with 81% remaining at the end of the observation period. These findings demonstrate that SSC sawing dust exposure induces pulmonary inflammation and damage that warrants further investigation. Abbreviations: ANOVA: Analysis of Variance; ATH: Alumina Trihydrate; BALF: Bronchoalveolar Lavage Fluid; Dpg: Geometric Mean Diameter; FE-SEM: Field Emission Scanning Electron Microscopy; IACUC: Institutional Animal Care and Use Committee; IFN-γ: Interferon Gamma; IL-1 Β: Interleukin-1 Beta; IL-10: Interleukin-10; IL-12: Interleukin-12; IL-2: Interleukin-2; IL-4: Interleukin-4; IL-5: Interleukin-5; IL-6: Interleukin-6; KC/GRO: Neutrophil-Activating Protein 3; MMAD: Mass Median Aerodynamic Diameter; PBS: Phosphate-Buffered Saline; PEL: Permissible Exposure Limit; PM: Polymorphonuclear Leukocytes; PNOR: Particles Not Otherwise Regulated; SEM/EDX: Scanning Electron Microscope/Energy-Dispersive X-Ray; SSA: Specific Surface Area; SSC: Solid Surface Composite; TNFα: Tumor Necrosis Factor-Alpha; VOC: Volatile Organic Compounds; σg: Geometric Standard Deviation.


Subject(s)
Dust , Lung Diseases/chemically induced , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Construction Materials , Cytokines/chemistry , Cytokines/metabolism , Inflammation/chemically induced , Inhalation Exposure , Male , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
12.
Indoor Air ; 28(6): 840-851, 2018 11.
Article in English | MEDLINE | ID: mdl-30101413

ABSTRACT

Fused deposition modeling (FDM™) 3-dimensional printing uses polymer filament to build objects. Some polymer filaments are formulated with additives, though it is unknown if they are released during printing. Three commercially available filaments that contained carbon nanotubes (CNTs) were printed with a desktop FDM™ 3-D printer in a chamber while monitoring total particle number concentration and size distribution. Airborne particles were collected on filters and analyzed using electron microscopy. Carbonyl compounds were identified by mass spectrometry. The elemental carbon content of the bulk CNT-containing filaments was 1.5 to 5.2 wt%. CNT-containing filaments released up to 1010 ultrafine (d < 100 nm) particles/g printed and 106 to 108 respirable (d ~0.5 to 2 µm) particles/g printed. From microscopy, 1% of the emitted respirable polymer particles contained visible CNTs. Carbonyl emissions were observed above the limit of detection (LOD) but were below the limit of quantitation (LOQ). Modeling indicated that, for all filaments, the average proportional lung deposition of CNT-containing polymer particles was 6.5%, 5.7%, and 7.2% for the head airways, tracheobronchiolar, and pulmonary regions, respectively. If CNT-containing polymer particles are hazardous, it would be prudent to control emissions during use of these filaments.


Subject(s)
Imaging, Three-Dimensional , Nanotubes, Carbon , Polymers/chemistry , Environmental Monitoring/methods , Inhalation Exposure , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...