Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Physiol Nutr Metab ; 47(2): 151-158, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34587469

ABSTRACT

This study described the whole blood fatty acid profile and Omega-3 Index (O3I) of Australian Army recruits at the commencement and completion of basic military training (BMT). Eighty males (17-34 y, 77.4 ± 13.0 kg, 43.5 ± 4.3 mL/kg/min) and 37 females (17-45 y, 64.3 ± 8.8 kg, 39.3 ± 2.7 mL/kg/min) volunteered to participate (N = 117). Whole blood samples of each recruit were collected using a finger prick in weeks 1 and 11 (n = 82) and analysed via gas chromatography for the relative proportions of each fatty acid (mean [95% confidence interval]). The macronutrient characteristics of the diet offerings was also determined. At commencement there was a low omega-3 status (sum of omega-3; 4.95% [4.82-5.07]) and O3I (5.03% [4.90-5.16]) and no recruit recorded an O3I >8% (desirable). The omega-6/omega-3 (7.04 [6.85-7.23]) and arachidonic acid/eicosapentaenoic acid (AA/EPA) (18.70 [17.86-19.53]) ratios for the cohort were also undesirable. The BMT mess menu provided a maximum of 190 mg/day of EPA and 260 mg/day of docosahexaenoic acid (DHA). The O3I of the recruits was lower by week 11 (4.62% [4.51-4.78], p < 0.05), the omega-6/omega-3 increased (7.27 [7.07-7.47], p < 0.05) and the AA/EPA remained elevated (17.85 [16.89-18.81]). In conclusion, Australian Army recruits' omega-3 status remained undesirable during BMT and deserves nutritional attention. Novelty: Australian Army recruits' Omega-3 Index, at the commencement of BMT, was reflective of the Western-style diet. The BMT diet offered minimum opportunity for daily EPA and DHA consumption. Every recruit experienced a further reduction of their Omega-3 Index during BMT.


Subject(s)
Diet/methods , Fatty Acids, Omega-3/blood , Fatty Acids/blood , Military Health/statistics & numerical data , Military Personnel/statistics & numerical data , Adolescent , Adult , Australia , Cohort Studies , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Female , Humans , Male , Middle Aged , Young Adult
2.
Eur J Appl Physiol ; 121(10): 2925-2938, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34212218

ABSTRACT

PURPOSE: The first aim of this experiment was to evaluate the appropriateness of linear and non-linear (allometric) models to scale peak aerobic power (oxygen consumption) against body mass. The possibilities that oxygen consumption would scale allometrically across the complete metabolic range, and that the scaling exponents would differ significantly between basal and maximal-exercise states, were then evaluated. It was further hypothesised that the scaling exponent would increase in a stepwise manner with elevations in exercise intensity. Finally, the utility of applying the scaling exponent derived for peak aerobic power to another population sample was evaluated. METHODS: Basal, steady-state walking and peak (treadmill) oxygen-consumption data were measured using 60 relatively homogeneous men (18-40 year; 56.0-117.1 kg), recruited across five mass classes. Linear and allometric regressions were applied, with the utility of each scaling method evaluated. RESULTS: Oxygen consumption scaled allometrically with body mass across the complete metabolic range, and was always superior to both ratiometric analysis and linear regression. The scaling exponent increased significantly from rest (mass0.57) to maximal exercise (mass0.75; P < 0.05), but not between steady-state walking (mass0.87) and maximal exercise (P > 0.05). When used with an historical database, the maximal-exercise exponent successfully removed the mass bias. CONCLUSION: It has been demonstrated that the oxygen consumption of healthy humans scales allometrically with body mass across the entire metabolic range. Moreover, only two scaling exponents (rest and exercise) were required to produce mass-independent outcomes from those data. Accordingly, ratiometric and linear regression analyses are not recommended as scaling methods.


Subject(s)
Exercise/physiology , Oxygen Consumption/physiology , Running/physiology , Walking/physiology , Adolescent , Adult , Basal Metabolism/physiology , Body Weight/physiology , Exercise Test , Humans , Young Adult
4.
Eur J Appl Physiol ; 121(1): 193-208, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33011890

ABSTRACT

PURPOSE: In tachymetabolic species, metabolic rate increases disproportionately with body mass, and that inter-specific relationship is typically modelled allometrically. However, intra-specific analyses are less common, particularly for healthy humans, so the possibility that human metabolism would also scale allometrically was investigated. METHODS: Basal metabolic rate was determined (respirometry) for 68 males (18-40 years; 56.0-117.1 kg), recruited across five body-mass classes. Data were collected during supine, normothermic rest from well-rested, well-hydrated and post-absorptive participants. Linear and allometric regressions were applied, and three scaling methods were assessed. Data from an historical database were also analysed (2.7-108.9 kg, 4811 males; 2.0-96.4 kg, 2364 females). RESULTS: Both linear and allometric functions satisfied the statistical requirements, but not the biological pre-requisite of an origin intercept. Mass-independent basal metabolic data beyond the experimental mass range were not achieved using linear regression, which yielded biologically impossible predictions as body mass approached zero. Conversely, allometric regression provided a biologically valid, powerful and statistically significant model: metabolic rate = 0.739 * body mass0.547 (P < 0.05). Allometric analysis of the historical male data yielded an equivalent, and similarly powerful model: metabolic rate = 0.873 * body mass0.497 (P < 0.05). CONCLUSION: It was established that basal and resting metabolic rates scale allometrically with body mass in humans from 10-117 kg, with an exponent of 0.50-0.55. It was also demonstrated that ratiometric scaling yielded invalid metabolic predictions, even within the relatively narrow experimental mass range. Those outcomes have significant physiological implications, with applications to exercising states, modelling, nutrition and metabolism-dependent pharmacological prescriptions.


Subject(s)
Basal Metabolism , Biological Variation, Population , Adolescent , Adult , Body Temperature , Body Weight , Data Interpretation, Statistical , Exercise , Humans , Male , Reference Standards , Supine Position
SELECTION OF CITATIONS
SEARCH DETAIL
...