Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Infect Prev Pract ; 5(4): 100322, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38028361

ABSTRACT

Background: Due to the disadvantages of manual disinfection of patient rooms, mobile disinfection robots using ultraviolet C (UV-C) radiation are increasingly being used. Assessing their in situ effectiveness remains challenging. Aim: This study describes a new method to prove adequate in situ disinfection (≥5-log reduction in bacterial load), and uses this method to assess the efficacy of a mobile disinfection robot using UV-C radiation. Methods: Agar plates serving as proxies for smooth surfaces in patient rooms were inoculated with bacterial suspension and placed on various surfaces in a patient room. After irradiation by an automated mobile UV-C robot, reduction in colony growth was determined by comparing the irradiated plates to a reference series of non-irradiated plates, enabling the evaluation of whether an adequate reduction in colony-forming units (CFU's) of ≥5-log was reached on these irradiated surfaces. Findings: The new technique described here proved a successful method for demonstrating an in situ ≥5-log reduction in CFU's for five different bacterial pathogens. Of the 32 plates placed on UV-accessible surfaces, 31 showed an adequate reduction in CFU's of ≥5-log. One plate could not be assessed. Conclusion: Inoculated agar plates placed in patient rooms before irradiation and subsequently compared to a reference series can be used to assess in situ efficacy of mobile disinfection robots using UV-C radiation. Our findings support the idea that UV-C robots, used adjunctively to conventional manual washing and disinfection, may achieve adequate bacterial load reduction on UV-accessible smooth surfaces in patient rooms for a selected subset of pathogens.

2.
Euro Surveill ; 28(4)2023 01.
Article in English | MEDLINE | ID: mdl-36700867

ABSTRACT

We analysed SARS-CoV-2 PCR Cq values from 3,183 healthcare workers who tested positive between January and August 2022. Median Cq values were lower in symptomatic than in asymptomatic HCW. The difference in Cq values between HCW with mild vs moderate/severe symptoms was statistically significant but negligibly small. To prevent nosocomial infections, all symptomatic HCW should be tested irrespective of symptom severity. This information can support decisions on testing and isolation, in the context of ongoing pressure on healthcare systems.


Subject(s)
COVID-19 , Cross Infection , Humans , COVID-19/diagnosis , SARS-CoV-2 , Netherlands/epidemiology , Health Personnel
3.
Antimicrob Resist Infect Control ; 11(1): 149, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471395

ABSTRACT

BACKGROUND: Terminal cleaning and disinfection of hospital patient rooms must be performed after discharge of a patient with a multidrug resistant micro-organism to eliminate pathogens from the environment. Terminal disinfection is often performed manually, which is prone to human errors and therefore poses an increased infection risk for the next patients. Automated whole room disinfection (WRD) replaces or adds on to the manual process of disinfection and can contribute to the quality of terminal disinfection. While the in vitro efficacy of WRD devices has been extensively investigated and reviewed, little is known about the in situ efficacy in a real-life hospital setting. In this review, we summarize available literature on the in situ efficacy of WRD devices in a hospital setting and compare findings to the in vitro efficacy of WRD devices. Moreover, we offer practical recommendations for the implementation of WRD devices. METHODS: The in situ efficacy was summarized for four commonly used types of WRD devices: aerosolized hydrogen peroxide, H2O2 vapour, ultraviolet C and pulsed xenon ultraviolet. The in situ efficacy was based on environmental and clinical outcome measures. A systematic literature search was performed in PubMed in September 2021 to identify available literature. For each disinfection system, we summarized the available devices, practical information, in vitro efficacy and in situ efficacy. RESULTS: In total, 54 articles were included. Articles reporting environmental outcomes of WRD devices had large variation in methodology, reported outcome measures, preparation of the patient room prior to environmental sampling, the location of sampling within the room and the moment of sampling. For the clinical outcome measures, all included articles reported the infection rate. Overall, these studies consistently showed that automated disinfection using any of the four types of WRD is effective in reducing environmental and clinical outcomes. CONCLUSION: Despite the large variation in the included studies, the four automated WRD systems are effective in reducing the amount of pathogens present in a hospital environment, which was also in line with conclusions from in vitro studies. Therefore, the assessment of what WRD device would be most suitable in a specific healthcare setting mostly depends on practical considerations.


Subject(s)
Disinfection , Hydrogen Peroxide , Humans , Disinfection/methods , Hydrogen Peroxide/pharmacology , Ultraviolet Rays , Patients' Rooms , Xenon
4.
Antimicrob Resist Infect Control ; 10(1): 77, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33971944

ABSTRACT

BACKGROUND: Healthcare-associated infections (HAIs) are a significant cause of morbidity and mortality in hospitalized patients. Water in the environment can be a source of infection linked to outbreaks and environmental transmission in hospitals. Water safety in hospitals remains a challenge. This article has summarized available scientific literature to obtain an overview of outbreaks linked to water-containing hospital equipment and strategies to prevent such outbreaks. METHODS: We made a list of water-containing hospital equipment and devices in which water is being used in a semi-closed circuit. A literature search was performed in PubMed with a search strategy containing the names of these medical devices and one or more of the following words: outbreak, environmental contamination, transmission, infection. For each medical device, we summarized the following information: the function of the medical device, causes of contamination, the described outbreaks and possible prevention strategies. RESULTS: The following water-containing medical equipment  or devices were identified: heater-cooler units, hemodialysis equipment, neonatal incubators, dental unit waterlines, fluid warmers, nebulizers, water traps, water baths, blanketrol, scalp cooling, and thermic stimulators. Of the latter three, no literature could be found. Of all other devices, one or more outbreaks associated with these devices were reported in the literature. CONCLUSIONS: The water reservoirs in water-containing medical devices can be a source of microbial growth and transmissions to patients, despite the semi-closed water circuit. Proper handling and proper cleaning and disinfection can help to reduce the microbial burden and, consequently, transmission to patients. However, these devices are often difficult to clean and disinfect because they cannot be adequately opened or disassembled, and the manufacturer's cleaning guidelines are often not feasible to execute. The development of equipment without water or fluid containers should be stimulated. Precise cleaning and disinfection guidelines and instructions are essential for instructing healthcare workers and hospital cleaning staff to prevent potential transmission to patients.


Subject(s)
Cross Infection/epidemiology , Equipment Contamination , Water Supply , Cross Infection/prevention & control , Disease Outbreaks , Disinfection/standards , Equipment Contamination/prevention & control , Equipment and Supplies, Hospital , Humans , Infection Control
5.
J Clin Microbiol ; 58(12)2020 11 18.
Article in English | MEDLINE | ID: mdl-32938733

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based species identification has found its place in many clinical routine diagnostic laboratories over the past years, allowing significantly reduced turnaround times and high-precision results. With regard to MALDI-TOF MS for filamentous fungi, here, we discuss different approaches for sample processing and growth conditions before analysis. In particular, we review the performances of different commercially available databases as well as the potential of complementary (self-constructed) in-house databases.


Subject(s)
Clinical Laboratory Services , Fungi , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Article in English | MEDLINE | ID: mdl-31262763

ABSTRACT

Nontuberculous mycobacteria (NTM) are highly drug-resistant, opportunistic pathogens that can cause pulmonary disease. The outcomes of the currently recommended treatment regimens are poor, especially for Mycobacterium abscessus New or repurposed drugs are direly needed. Auranofin, a gold-based antirheumatic agent, was investigated for Mycobacterium tuberculosis Here, we test auranofin against NTM in vitro and ex vivo We tested the susceptibility of 63 NTM isolates to auranofin using broth microdilution. Next, we assessed synergy between auranofin and antimycobacterial drugs using the checkerboard method and calculated the fractional inhibition concentration index (FICI). Using time-kill kinetics assays (TK), we assessed pharmacodynamics of auranofin alone and in combination with drug combinations showing the lowest FICIs for M. abscessus CIP 104536. A response surface analysis was used to assess synergistic interactions over time in TKs. Primary isolated macrophages were infected with M. abscessus and treated with auranofin. Finally, using KEGG Orthology, we looked for orthologues to auranofins drug target in M. tuberculosisM. abscessus had the lowest auranofin MIC50 (2 µg/ml) among the tested NTM. The lowest average FICIs were observed between auranofin and amikacin (0.45) and linezolid (0.50). Auranofin exhibited concentration-dependent killing of M. abscessus, with >1-log killing at concentrations of >2× MIC. Only amikacin was synergistic with auranofin according to Bliss independence. Auranofin could not lower the intracellular bacterial load in macrophages. Auranofin itself may not be feasible for M. abscessus treatment, but these data point toward a promising, unutilized drug target.


Subject(s)
Anti-Bacterial Agents/pharmacology , Auranofin/pharmacology , Mycobacterium abscessus/drug effects , Anti-Bacterial Agents/pharmacokinetics , Auranofin/pharmacokinetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Drug Therapy, Combination , Humans , Kinetics , Macrophages/microbiology , Microbial Sensitivity Tests , Mycobacterium/drug effects , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/enzymology , Phylogeny , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thioredoxin-Disulfide Reductase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...