Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS J ; 25(1): 10, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482268

ABSTRACT

The rapid development of biologics and vaccines in response to the current pandemic has highlighted the need for robust platform assays to characterize diverse biopharmaceuticals. A critical aspect of biopharmaceutical development is achieving a highly pure product, especially with respect to residual host cell material. Specifically, two important host cell impurities of focus within biopharmaceuticals are residual DNA and protein. In this work, a novel high-throughput host cell DNA quantitation assay was developed for rapid screening of complex vaccine drug substance samples. The developed assay utilizes the commercially available, fluorescent-sensitive Picogreen dye within a 96-well plate configuration to allow for a cost effective and rapid analysis. The assay was applied to in-process biopharmaceutical samples with known interferences to the dye, including RNA and protein. An enzymatic digestion pre-treatment was found to overcome these interferences and thus allow this method to be applied to wide-ranging, diverse analyses. In addition, the use of deoxycholate in the digestion treatment allowed for disruption of interactions in a given sample matrix in order to more accurately and selectively quantitate DNA. Critical analytical figures of merit for assay performance, such as precision and spike recovery, were evaluated and successfully demonstrated. This new analytical method can thus be successfully applied to both upstream and downstream process analysis for biologics and vaccines using an innovative and automated high-throughput approach.


Subject(s)
Biological Products , Vaccines , Research Design , DNA
2.
Anal Chem ; 94(3): 1678-1685, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34928586

ABSTRACT

The employment of ethylenediaminetetraacetic acid (EDTA) across several fields in chemistry and biology has required the creation of a high number of quantitative assays. Nonetheless, the determination of trace EDTA, especially in biologics and vaccines, remains challenging. Herein, we introduce an automated high-throughput approach based on EDTA esterification in 96-well plates using boron trifluoride-methanol combined with rapid analysis by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Derivatization of EDTA to its methyl ester (Me-EDTA) serves to significantly improve chromatographic performance (retention, peak shape, and selectivity), while also delivering a tremendous enhancement of sensitivity in the positive ion mode electrospray ionization (ESI+). This procedure, in contrast to previous EDTA methods based on complexation with metal ions, is not affected by high concentration of other metals, buffers, and related salts abundantly present in biopharmaceutical processes (e.g., iron, copper, citrate, etc.). Validation of this assay for the determination of ng·mL-1 level EDTA in monoclonal antibody and vaccine products demonstrated excellent performance (repeatability, precision, and linear range) with high recovery from small sample volumes while also providing an advantageous automation-friendly workflow for high-throughput analysis.


Subject(s)
Biological Products , Vaccines , Boranes , Chromatography, High Pressure Liquid/methods , Edetic Acid , Methanol , Tandem Mass Spectrometry/methods
3.
Anal Biochem ; 337(1): 48-54, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15649374

ABSTRACT

An automated fluorescence polarization (FP) assay has been developed for the quantitation of polysorbate in bioprocess samples. Using the lipophilic probe 5-dodecanoylaminofluorescein (DAF), polysorbate concentrations above the critical micelle concentration can be quantified by the FP increase that results when DAF inserts into the detergent micelles. The specificity, accuracy, and precision of this assay were defined for samples obtained from vaccine purification processes. Spike recoveries were 98-106% for purified products and 110-120% for crude process intermediates. The coefficients of variation for intra- and interassay precision were less than 9 and 14%, respectively. Because of the operational simplicity of the assay, all of the assay steps from sample preparation to data reduction were automated on a Tecan liquid-handling workstation. The combination of a rapid assay and an automated format makes this method well suited to the routine analysis of samples from trial purification processes which are carried out during the development of a vaccine or therapeutic protein. This method should be adaptable for the quantitation of other detergents into which DAF will insert.


Subject(s)
Fluorescence Polarization/methods , Polysorbates/analysis , Automation , Detergents , Fluorescein , Lauric Acids , Methods , Micelles , Vaccines/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...