Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Reprod ; 109(6): 812-820, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37688580

ABSTRACT

Embryo morphokinetic analysis through time-lapse embryo imaging is envisioned as a method to improve selection of developmentally competent embryos. Morphokinetic analysis could be utilized to evaluate the effects of experimental manipulation on pre-implantation embryo development. The objectives of this study were to establish a normative morphokinetic database for in vitro fertilized rhesus macaque embryos and to assess the impact of atypical initial cleavage patterns on subsequent embryo development and formation of embryo outgrowths. The cleavage pattern and the timing of embryo developmental events were annotated retrospectively for unmanipulated in vitro fertilized rhesus macaque blastocysts produced over four breeding seasons. Approximately 50% of the blastocysts analyzed had an abnormal early cleavage event. The time to the initiation of embryo compaction and the time to completion of hatching was significantly delayed in blastocysts with an abnormal early cleavage event compared to blastocysts that had cleaved normally. Embryo hatching, attachment to an extracellular matrix, and growth during the implantation stage in vitro was not impacted by the initial cleavage pattern. These data establish normative morphokinetic parameters for in vitro fertilized rhesus macaque embryos and suggest that cleavage anomalies may not impact embryo implantation rates following embryo transfer.


Subject(s)
Embryonic Development , Fertilization in Vitro , Animals , Macaca mulatta , Retrospective Studies , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Embryo, Mammalian , Embryo Implantation , Blastocyst , Time-Lapse Imaging/methods , Embryo Culture Techniques/veterinary , Embryo Culture Techniques/methods
2.
Sci Rep ; 12(1): 7348, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513694

ABSTRACT

Zika virus (ZIKV) infection at the maternal-placental interface is associated with adverse pregnancy outcomes including fetal demise and pregnancy loss. To determine how infection impacts placental trophoblasts, we utilized rhesus macaque trophoblast stem cells (TSC) that can be differentiated into early gestation syncytiotrophoblasts (ST) and extravillous trophoblasts (EVT). TSCs and STs, but not EVTs, were highly permissive to productive infection with ZIKV strain DAK AR 41524. The impact of ZIKV on the cellular transcriptome showed that infection of TSCs and STs increased expression of immune related genes, including those involved in type I and type III interferon responses. ZIKV exposure altered extracellular vesicle (EV) mRNA, miRNA and protein cargo, including ZIKV proteins, regardless of productive infection. These findings suggest that early gestation macaque TSCs and STs are permissive to ZIKV infection, and that EV analysis may provide a foundation for identifying non-invasive biomarkers of placental infection in a highly translational model.


Subject(s)
Extracellular Vesicles , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Animals , Extracellular Vesicles/genetics , Female , Gene Expression , Humans , Macaca mulatta , Placenta/metabolism , Pregnancy , Trophoblasts/metabolism , Zika Virus/physiology
3.
Biol Reprod ; 104(1): 27-57, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32856695

ABSTRACT

Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.


Subject(s)
Extracellular Vesicles/metabolism , Placenta Diseases/diagnosis , Placenta/metabolism , Exosomes/metabolism , Female , Humans , Placenta Diseases/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...